Komplexe Zahlen und ebene Geometrie (De Gruyter Studium) (2016. XI, 214 S. 160 b/w ill. 240 mm)

個数:

Komplexe Zahlen und ebene Geometrie (De Gruyter Studium) (2016. XI, 214 S. 160 b/w ill. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783110406863

Full Description

Komplexe Zahlen sind ein wichtiges Darstellungsmittel für zentrale Problemstellungen der Analysis und der Geometrie. Sie erweisen sich als elegantes Mittel zum Lösen von Gleichungen in der Mathematik, aber auch zum Mathematisieren von Problemen aus Physik und Technik. Als Vektoren in der Ebene wie als Drehstreckung dienen sie ebenso der Veranschaulichung geometrischer Objekte.
Diese Buch führt anschaulich in die Arithmetik komplexer Zahlen ein und behandelt umfassend ihre Rolle sowohl beim Lösen von Gleichungen wie auch in der Geometrie der Ebene. Dabei werden ebenfalls Bezüge zur historischen Entwicklung zentraler mathematischer Resultate thematisiert. Übungsaufgaben mit Lösungen zu den einzelnen Kapiteln sowie ein Anhang zum Rechnen mit komplexen Zahlen und konformen Abbildungen in MAPLE komplettieren das Buch.
Diese dritte Auflage wurde um Abschnitte zur nichteuklidischen Geometrie und einer Vorstellung des Programms Cinderella zur Analyse und Visualisierung geometrischer Konstruktionen erweitert. Weiterhin sind in der neuen Auflage zahlreiche Farbabbildungen enthalten.

Inhalt:
Komplexe Zahlen und ihre geometrische Darstellung
Primzahlen im Komplexen
Lösungen algebraischer Gleichungen
Fundamentalsatz der Algebra
Riemannsche Kugel
Komplexe Funktionen
Gebrochen lineare Funktionen
Die Jukowski-Funktion und die Funktion w = z^2
Nichteuklidische Geometrie
Komplexe Zahlen und dynamische Geometrie
Komplexe Zahlen und Konforme Abbildungen mit MAPLE