Gibbs Measures and Phase Transitions (De Gruyter Studies in Mathematics 9) (2nd ext. ed. 2011. XIV, 545 S. 240 mm)

Gibbs Measures and Phase Transitions (De Gruyter Studies in Mathematics 9) (2nd ext. ed. 2011. XIV, 545 S. 240 mm)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 540 p.
  • 商品コード 9783110250299

Full Description

From a review of the first edition: "This book [...] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.

Contents

Frontmatter -- Preface -- Contents -- Introduction -- Part I. General theory and basic examples -- Chapter 1 Specifications of random fields -- Chapter 2 Gibbsian specifications -- Chapter 3 Finite state Markov chains as Gibbs measures -- Chapter 4 The existence problem -- Chapter 5 Specifications with symmetries -- Chapter 6 Three examples of symmetry breaking -- Chapter 7 Extreme Gibbs measures -- Chapter 8 Uniqueness -- Chapter 9 Absence of symmetry breaking. Non-existence -- Part II. Markov chains and Gauss fields as Gibbs measures -- Chapter 10 Markov fields on the integers I -- Chapter 11 Markov fields on the integers II -- Chapter 12 Markov fields on trees -- Chapter 13 Gaussian fields -- Part III. Shift-invariant Gibbs measures -- Chapter 14 Ergodicity -- Chapter 15 The specific free energy and its minimization -- Chapter 16 Convex geometry and the phase diagram -- Part IV. Phase transitions in reflection positive models -- Chapter 17 Reflection positivity -- Chapter 18 Low energy oceans and discrete symmetry breaking -- Chapter 19 Phase transitions without symmetry breaking -- Chapter 20 Continuous symmetry breaking in N-vector models -- Bibliographical Notes -- Further Progress -- References -- References to the Second Edition -- List of Symbols -- Index

最近チェックした商品