The Maz'ya Anniversary Collection : Volume 1: On Maz'ya's work in functional analysis, partial differential equations and applications (Operator Theory: Advances and Applications)

個数:

The Maz'ya Anniversary Collection : Volume 1: On Maz'ya's work in functional analysis, partial differential equations and applications (Operator Theory: Advances and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 364 p.
  • 言語 ENG
  • 商品コード 9783034897266
  • DDC分類 510

Full Description

The contributions in this volume are dedicated to Vladimir G. Maz'ya and are par­ tially based on talks given at the conference "Functional Analysis, Partial Differ­ ential Equations, and Applications", which took place at the University of Rostock from August 31 to September 4, 1998, to honour Prof. Maz'ya. This conference (a satellite meeting of the ICM) gave an opportunity to many friends and colleagues from all over the world to honour him. This academic community is very large. The scientific field of Prof. Maz'ya is impressively broad, which is reflected in the variety of contributions included in the volumes. Vladimir Maz'ya is the author and co-author of many publications (see the list of publications at the end of this volume), the topics of which extend from functional analysis, function theory and numerical analysis to partial differential equations and their broad applications. Vladimir G. Maz'ya provided significant contributions, among others to the the­ ory of Sobolev spaces, the capacity theory, boundary integral methods, qualitative and asymptotic methods of analysis of linear and nonlinear elliptic differential equations, the Cauchy problem for elliptic and hyperbolic equations, the theory of multipliers in spaces of differentiable functions, maximum principles for elliptic and parabolic systems, and boundary value problems in domains with piecewise smooth boundaries. Surveys on Maz'ya's work in different fields of mathematics and areas, where he made essential contributions, form a major part of the present first volume of The Maz'ya Anniversary Collection.

Contents

Vladimir Maz'ya: Friend and mathematician. Recollections.- On Maz'ya's work in potential theory and the theory of function spaces.- 1. Introduction.- 2. Embeddings and isoperimetric inequalities.- 3. Regularity of solutions.- 4. Boundary regularity.- 5. Nonlinear potential theory.- Maz'ya's works in the linear theory of water waves.- 1. Introduction.- 2. The unique solvability of the water wave problem.- 3. The Neumann-Kelvin problem.- 4. Asymptotic expansions for transient water waves due to brief and high-frequency disturbances.- Maz'ya's work on integral and pseudodifferential operators.- 1. Non-elliptic operators.- 2. Oblique derivative problem: breakthrough in the generic case of degeneration.- 3. Estimates for differential operators in the half-space.- 4. The characteristic Cauchy problem for hyperbolic equations.- 5. New methods for solving ill-posed boundary value problems.- 6. Applications of multiplier theory to integral operators.- 7. Integral equations of harmonic potential theory on general non-regular surfaces.- 8. Boundary integral equations on piecewise smooth surfaces.- Contributions of V. Maz'ya to the theory of boundary value problems in nonsmooth domains.- 1. Maz'ya's early work on boundary value problems in nonsmooth domains.- 2. General elliptic boundary value problems in domains with point singularities.- 3. Boundary value problems in domains with edges.- 4. Spectral properties of operator pencils generated by elliptic boundary value problems in a cone.- 5. Applications to elastostatics and hydrodynamics.- 6. Singularities of solutions to nonlinear elliptic equations at a cone vertex.- On some potential theoretic themes in function theory.- 1. Approximation theory.- 2. Uniqueness properties of analytic functions.- 3. The Cauchyproblem for the Laplace equation.- Approximate approximations and their applications.- 1. Introduction.- 2. Quasi-interpolation.- 3. Generating functions for quasi-interpolation of high order.- 4. Semi-analytic cubature formulas.- 5. Cubature of integral operators over bounded domains.- 6. Approximate wavelets.- 7. Numerical algorithms based upon approximate approximations.- Maz'ya's work on the biography of Hadamard.- Isoperimetric inequalities and capacities on Riemannian manifolds.- 1. Introduction.- 2. Capacity of balls.- 3. Parabolicity of manifolds.- 4. Isoperimetric inequality and Sobolev inequality.- 5. Capacity and the principal frequency.- 6. Cheeger's inequality.- 7. Eigenvalues of balls on spherically symmetric manifolds.- 8. Heat kernel on spherically symmetric manifolds.- Multipliers of differentiable functions and their traces.- 1. Introduction.- 2. Description and properties of multipliers.- 3. Multipliers in the space of Bessel potentials as traces of multipliers.- An asymptotic theory of nonlinear abstract higher order ordinary differential equations.- Sobolev spaces for domains with cusps.- 1. Introduction.- 2. Extension theorems.- 3. Embedding theorems.- 4. Boundary values of Sobolev functions.- Extension theorems for Sobolev spaces.- 1. Introduction.- 2. Extensions with preservation of class.- 3. Estimates for the minimal norm of an extension operator.- 4. Extensions with deterioration of class.- Contributions of V.G. Maz'ya to analysis of singularly perturbed boundary value problems.- 1. Introduction.- 2. Domain with a small hole.- 3. General asymptotic theory by Maz'ya, Nazarov and Plamenevskii.- 4. Asymptotics of solutions of boundary integral equations under a small perturbation of a corner.- 5. Compound asymptotics for homogenizationproblems.- 6. Boundary value problems in 3D-1D multi-structures.- Asymptotic analysis of a mixed boundary value problem in a singularly degenerating domain.- 1. Introduction.- 2. Formulation of the problem.- 3. The leading order approximation.- A history of the Cosserat spectrum.- 1. Introduction.- 2. The first boundary value problem of elastostatics.- 3. The second and other boundary-value problems.- 4. Applications and other related results.- Boundary integral equations for plane domains with cusps.- 1. Introduction.- 2. Integral equations in weighted Sobolev spaces.- On Maz'ya type inequalities for convolution operators.- 1. Introduction.- 2. One-dimensional polynomials.- 3. The functions ?x?2? in ? n.- Sharp constants and maximum principles for elliptic and parabolic systems with continuous boundary data.- 1. The norm and the essential norm of the double layer elastic and hydrodynamic potentials in the space of continuous functions.- 2. Exact constants in inequalities of maximum principle type for certain systems and equations of mathematical physics.- 3. Maximum modulus principle for elliptic systems.- 4. Maximum modulus principle for parabolic systems.- 5. Maximum norm principle for parabolic systems.- Lp-contractivity of semigroups generated by parabolic matrix differential operators.- 1. Introduction.- 2. Preliminaries.- 3. Weakly coupled systems.- 4. Coupled systems.- Curriculum vitae of Vladimir Maz'ya.- Publications of Vladimir Maz'ya.

最近チェックした商品