Groups with the Haagerup Property : Gromov's a-T-menability (Progress in Mathematics .197) (Softcover reprint of the original 1st ed. 2001. 2012. vii, 126 S. VII,)

個数:

Groups with the Haagerup Property : Gromov's a-T-menability (Progress in Mathematics .197) (Softcover reprint of the original 1st ed. 2001. 2012. vii, 126 S. VII,)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 126 p.
  • 言語 ENG
  • 商品コード 9783034894869

Full Description

A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point.

The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized.

Contents

1 Introduction.- 1.1 Basic definitions.- 1.2 Examples.- 1.3 What is the Haagerup property good for?.- 1.4 What this book is about.- 2 Dynamical Characterizations.- 2.1 Definitions and statements of results.- 2.2 Actions on measure spaces.- 2.3 Actions on factors.- 3 Simple Lie Groups of Rank One.- 3.1 The Busemann cocycle and theGromov scalar product.- 3.2 Construction of a quadratic form.- 3.3 Positivity.- 3.4 The link with complementary series.- 4 Classification of Lie Groups with the Haagerup Property.- 4.0 Introduction.- 4.1 Step one.- 4.2 Step two.- 5 The Radial Haagerup Property.- 5.0 Introduction.- 5.1 The geometry of harmonic NA groups.- 5.2 Harmonic analysis on H-type groups.- 5.3 Analysis on harmonic NA groups.- 5.4 Positive definite spherical functions.- 5.5 Appendix on special functions.- 6 Discrete Groups.- 6.1 Some hereditary results.- 6.2 Groups acting on trees.- 6.3 Group presentations.- 6.4 Appendix: Completely positive mapson amalgamated products,by Paul Jolissaint.- 7 Open Questions and Partial Results.- 7.1 Obstructions to the Haagerup property.- 7.2 Classes of groups.- 7.3 Group constructions.- 7.4 Geometric characterizations.- 7.5 Other dynamical characterizations.

最近チェックした商品