Collaborative Computing: Networking, Applications and Worksharing (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering)

個数:
  • 予約
  • ポイントキャンペーン

Collaborative Computing: Networking, Applications and Worksharing (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032211705

Description

This two-volume set LNICST 680-681 constitutes the refereed proceedings of the 21st EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2025, held in Shanghai, China, during November 15 16, 2025.

The 58 full papers included in these volumes were carefully reviewed and selected from 207 submissions. They are categorized under the topical sections as follows:  

Part I: Large Language Models & Recommendation systems; and Deep Learning and application.
Part II: Federated Learning & Collaborative working; Edge computing & Task scheduling; Security and Blockchain applications; and Anomaly Detection.

.- Federated Learning & Collaborative working.
.- A Data Fusion Processing Architecture for Multi-Node Network Cooperative Integrated Sensing and Communication.
.-  Robustness Analysis of Multi-layer LEO Satellite Networks with Dynamic Heterogeneous Cascading Failure Model.
.- AC-KVS: Adaptive Centralized Key-Value Scheduler in Programmable Switch for Distributed Key-value Stores.
.- FedSTAR: A Federated Learning Framework for Reliable Trajectory Prediction under Spatiotemporal Heterogeneity.
.- A Hierarchical Model of Trusted Federation Based on Adaptive Mutual Learning.
.- A Service-Oriented Adaptive Hierarchical Incentive Solution for Federated Learning.
.- Correlation Aware Imbalanced Multimodal Fusion in IoT Environment.
.- Trust-Aware UAV-Vehicle Hierarchical Collaboration for Efficient Multimedia Big Data Collection.
.- PVA-FL: Practical Verifiable Aggregation for Privacy Preserving Federated Learning.
.-  H2A-BPMN: A Hierarchical & Hybrid Agent Framework for Industrial BPMN Automated Modeling.
.- LADSG: Label-Anonymized Distillation and SimilarGradient Substitution for Label Privacy in Vertical Federated Learning.
.- Edge computing & Task scheduling.
.- CPRGO : Delay-Aware Task Scheduling Strategy for Edge-Cloud Continuum in Multi-Hop Network Environments.
.-  Partial Pairwise Preference-Driven Task Allocation in Volunteer Crowdsourcing.
.- A deep matrix completion method for recovering edge collaborative sensing data in the Internet of Vehicles.
.- DCPS: A Novel Community-Interest-Aware Centralized Resource Scheduling Method for Cooperative MEC Caching.
.- Adaptive Multi-Objective Task Scheduling for K3s-Enabled UAV Swarms.
.- Adaptive Multi-Resource Orchestration for Latency Critical Service Function Chains in Mobile Edge Networks.
.- Joint Model Deployment and Task Offloading with Load Balancing for DNN Inference in Vehicular Edge Computing.
.- Security and Blockchain applications.
.- MVTest: Automated Metamorphic Testing of Multi-View Perception Systems.
.- Cyber-Attack Detection in Federated Learning: A Bidirectionally Secure and Verifiable Architecture.
.- GANBFL: A Reliable Incentive Mechanism for Federated Learning via GAN Based Evaluation and Blockchain Integration.
.-  A Review of Hardware Accelerated Design and Optimization Techniques for Reconfigurable Cryptosystems.
.- CLCBA: A Secure and Efficient Identity Authentication Scheme for Cross-Chain Interoperability.
.- A Cross-Chain Key Agreement and Regulatory Governance Framework Based on Peninsula Group
Permutation Rational Functions.
.- Anomaly Detection.
.- SkyPatrol: Aerial Peer Perspective Vision based Anomalous UAV Recognition.
.- A Novel Dynamic Spatio-Temporal Collaborative Model for Multivariate Time Series Anomaly Detection.
.- Topology-enhanced Graph Attention Network for Anomaly Detection in IIoT Domain.
.- An Adversarial Detection and Defense Method based on Neural Discrete Representation.
.- MemGT: Memory-augmented Graph Transformer based Unsupervised Model for Collaborative Internet of Things Anomaly Detection.
.-  Multi-scale Time frequency Collaborative Feature Learning for Unsupervised Anomaly Detection in Fluctuating IoT Time Series.


最近チェックした商品