Multimodal Event Detection on Social Media : DE (Wireless Networks)

個数:
  • 予約
  • ポイントキャンペーン

Multimodal Event Detection on Social Media : DE (Wireless Networks)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032204158

Full Description

This book systematically explores how to build reliable, cross-platform multimodal event detection systems that operate under open-world conditions in today's complex social media environment. It delves into three core challenges: information fragmentation caused by incomplete individual posts; cross-platform heterogeneity arising from the diverse ways different platforms (e.g., Twitter, Flickr) represent events; and the challenge of open-world discovery driven by the constant emergence of new event types. This book not only reveals how these challenges interact to constrain traditional methods but also provides specialized, cutting-edge solutions for each.

To address these challenges, this book proposes a progressive methodological framework consisting of three specialized models (MFEK, SSMC, and DAEO). By integrating external knowledge, employing self-supervised learning, and using uncertainty-aware new category discovery mechanisms, this framework offers a comprehensive guide from theory to practice. Furthermore, the book contributes several purpose-built datasets (SED, CSED, and MSED) designed to simulate real-world scenarios, aiming to foster reproducible research and bridge the gap between laboratory results and practical deployment. This work serves as a key reference for researchers and practitioners seeking to understand and build the next generation of intelligent event monitoring systems.

This book targets researchers, graduate students  in the fields of Artificial Intelligence, Natural Language Processing (NLP), Multimedia Computing, and Data Mining, who are focusing on multimodal analysis and social media analytics.  Data scientists, software engineers, and industry practitioners working on crisis management systems, public opinion monitoring, misinformation detection, and real-time news aggregation services will also find this book to be a valuable resource.

Contents

Chapter 1. Introduction.- Chapter 2. RelatedWork and Technical Foundations.- Chapter 3.- Multimodal Fusion with External Knowledge (MFEK).- Chapter 4.Self-supervised Modality Complementation (SSMC).- Chapter 5. Open-World Event Discovery (DAEO).- Chapter 6. Conclusion and Future Directions.

最近チェックした商品