Minimal Surfaces and Topology of Martensitic Phase Transformations : DE (Springer Theses)

個数:
  • 予約
  • ポイントキャンペーン

Minimal Surfaces and Topology of Martensitic Phase Transformations : DE (Springer Theses)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032195739

Full Description

This book brings together two areas which are regarded as separate disciplines: topology and martensitic transformations. Topology is the mathematical study of continuity, particularly through the transformation of surfaces, in this case, between what are called triply-periodic minimal surfaces (TPMS). Martensitic transformations are solid state structural transformations without significant diffusion or change in chemical composition. A particular type of such transformation is the shape-memory effect, where materials recover a pre-defined shape upon heating after being deformed at a lower temperature. Shape-memory materials have seen many technological applications. The main contributions of this thesis are: 1. A direct connection between TPMS and density-functional theory, which is more fundamental and versatile than previous approaches based on the electrostatics of point charges. 2. Showing that the martensitic transformation is a topological transformation between TPMS. Surfaces related by topological transformations retain several characteristics, known as topological invariants. For martensitic transformations, this is the genus, which is the number of holes in the surface. 3. For the shape-memory effect, showing that lattice sites must remain as flat points of the TPMS along the transformation path. This provides a fast-screening method for identifying shape-memory materials which can be used for more detailed studies of candidate materials.

Contents

Introduction.- Martensitic Phase Transformations and the Shape Memory Effect.- Triply Periodic Minimal Surfaces.- Visualisation of Minimal Surfaces Corresponding to Crystals.- Reversibility and Continuous Deformations.- Convergence to Triply Periodic Minimal Surfaces in Crystals.- Conclusion and Outlook.

最近チェックした商品