Nonequilibrium Criticality in One Dimension: from the Kardar-Parisi-Zhang Equation to Exciton-Polariton Condensates (Springer Theses)

個数:
  • 予約
  • ポイントキャンペーン

Nonequilibrium Criticality in One Dimension: from the Kardar-Parisi-Zhang Equation to Exciton-Polariton Condensates (Springer Theses)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032188991

Full Description

This book explores one-dimensional nonequilibrium systems, both classical and quantum, using extensive numerical simulations and advanced field-theoretical methods, namely the functional renormalization group. It weaves unexpected connections between classical statistical physics with the Kardar-Parisi-Zhang (FRG) equation, which is a famous model for stochastic interface growth; dynamical systems, with the complex Ginzburg-Landau (CGL) equation, which is a much-studied model of deterministic chaos; exciton-polariton fluids—elementary opto-electronic excitations created in dedicated semiconductor nanostructures—which are subject to a non-equilibrium Bose-Einstein transition. This work unveils a new fixed point of the one-dimensional KPZ equation, named inviscid Burgers (IB) fixed point, which had been missed so far, and which yields a new scaling regime in the limit of small surface tension (or small viscosity in the equivalent Burgers equation). It turns out that the IB fixed point also emerges in the CGL equation, in particular in the regime known as phase turbulence, where the phase correlations at intermediate wavenumbers are shown to systematically exhibit the IB universal scaling properties. Besides, the phase diagram of exciton-polaritons is fully determined and highlights the existence of three phases beyond the KPZ one, a soliton-patterned regime at large interactions and weak noise; a vortex-disordered regime at high noise and weak interactions; and a defect-free reservoir-textured regime when the adiabatic approximation breaks down.

Contents

Introduction: the Kardar-Parisi-Zhang universality class.- Functional renormalization group for the KPZ equation.- From chaos to KPZ universality via the Kuramoto-Sivashinsky equation.- Scaling and universality in the complex Ginzburg-Landau equation.- Nonequilibrium universality classes in one-dimensional exciton-polariton condensates.- Phase diagram of one-dimensional exciton-polariton condensates.

最近チェックした商品