Data Engineering for Data Science

個数:
  • 予約
  • ポイントキャンペーン

Data Engineering for Data Science

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032187642

Full Description

This open access book aims to synthesize and integrate the research challenges in data science and data engineering. It offers a comprehensive survey of the entire data management stack, from scalable and explainable data analytics to traceable data workflows. By providing a consistent framework, it facilitates a thorough understanding of the data science lifecycle, from basic definitions to state-of-the-art concepts and techniques. 

The book is divided into four parts, each focusing on a different aspect of the data management and science lifecycle: governance, storage and processing, preparation, and analysis. Each part is organized to provide a coherent conceptual framework and is divided into multiple chapters, each focusing on a specific topic but together offering a comprehensive overview of the state of the art and the key challenges in the respective areas. While the parts and chapters follow a logical sequence, each chapter is designed to be self-contained and can be read independently. Chapters include references for further reading and deeper exploration, and often also provide concrete examples or use cases to make the material more accessible. In addition, many chapters introduce a taxonomy to break down complex research areas into manageable components, highlighting the core directions and developments within each domain.

The book is designed to be a valuable resource for both researchers and practitioners seeking to leverage data engineering for data science applications. For both seasoned experts or budding professionals, it provides the tools and knowledge needed to stay at the forefront of data-driven advancements.

Contents

Part I. Governance and Integration.- Chapter 1. Text Data Integration.- Chapter 2. Exploring the Landscape of Data Fusion.- Chapter 3. Scalable and Privacy-aware Relational Data Synthesis.- Part II Storage and Processing.- Chapter 4. Comprehensive Approach to Feature Selection.- Chapter 5. Current Systems for Managing Massive High Frequency Time Series.- Chapter 6. MLOps Systems for Developing ML Pipelines.- Chapter 7. Workload Placement and Scheduling on Heterogeneous CPU-GPU Architectures.- Part III Preparation.- Chapter 8. Privacy-Preserving Blockchain-Based Federated Learning.- Chapter 9. Example-Based Explainability in Machine Learning.- Chapter 10. Table Search in Data Lakes: Methods, Indexing Techniques, and Research Challenges.- Part IV. Analysis.- Chapter 11. Adversarial Learning for Fraud Detection.- Chapter 12. Approximate and Adaptive Methods for Inference.- Chapter 13. Analysis of Unconstrained Trajectories, the Case of AIS.- Chapter 14. Network-constrained Trajectory Data for Traffic Analytics.

最近チェックした商品