Neural Symbolic Knowledge Graph Reasoning : A Pathway Towards Neural Symbolic AI (Synthesis Lectures on Computer Science) (2026. xiv, 140 S. XIV, 140 p. 36 illus., 34 illus. in color. 240 mm)

個数:
  • 予約

Neural Symbolic Knowledge Graph Reasoning : A Pathway Towards Neural Symbolic AI (Synthesis Lectures on Computer Science) (2026. xiv, 140 S. XIV, 140 p. 36 illus., 34 illus. in color. 240 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032158574

Full Description

This book explores various aspects of knowledge graph reasoning to solve different tasks, encompassing first, traditional symbolic methods for knowledge graph reasoning; second, recent developments in neural-based knowledge graph reasoning techniques; and third, cutting-edge advancements in neural-symbolic hybrid approaches to knowledge graph reasoning. The authors focus on the model and algorithm design aspect and study knowledge graphs from two perspectives: background knowledge graph and input query. Knowledge graph reasoning, which aims to infer and discover new knowledge from existing information in the knowledge graph, has played an important role in many real-world applications, such as question answering and recommender systems. A new trend in knowledge graph reasoning is the combination of neural models with symbolic knowledge graphs, allowing for the design of models that are not only efficient and accurate, but also interpretable. In this book, the authors study the application of neural-symbolic knowledge reasoning to different tasks from two perspectives: the input query and the background knowledge graph.

Contents

Introduction: Background and Challenges.- Knowledge Graph Reasoning for Accurate Query and Complete Graph.- Knowledge Graph Reasoning for Accurate Query and Incomplete Graph.- Knowledge Graph Reasoning for Ambiguous Query and Incomplete Graph.- Knowledge Graph Reasoning for Dynamic Query and Incomplete Graph.- Knowledge Graph Reasoning with Large Language Models.- Conclusion, Open Challenges, and Future Directions.

最近チェックした商品