Machine Learning Techniques to Solve Mechanical Vibration Problems Using Python (Studies in Systems, Decision and Control 655) (2026. x, 182 S. X, 182 p. 12 illus. in color. 235 mm)

個数:
  • 予約

Machine Learning Techniques to Solve Mechanical Vibration Problems Using Python (Studies in Systems, Decision and Control 655) (2026. x, 182 S. X, 182 p. 12 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032156761

Full Description

Machine vibrations hold the secrets to its health, but how do you translate their complex language into actionable, predictive intelligence? As modern industry demands unprecedented levels of reliability and efficiency, the ability to anticipate failures before they occur has become a critical competitive advantage. The key lies in the powerful intersection of classical engineering and modern data science.

Machine Learning for Vibration Problems is the definitive guide for engineers, data scientists, and students looking to master this essential discipline. This comprehensive book bridges the gap between traditional vibration analysis and cutting-edge machine learning, guiding you step-by-step through the entire Prognostics and Health Management (PHM) workflow.

Starting with the fundamentals of signal processing and feature engineering, you will learn to extract meaningful information from raw sensor data. From there, you will journey through a spectrum of algorithms—from interpretable models like Random Forests and SVMs to the powerhouses of deep learning. Master the application of Convolutional Neural Networks (CNNs) for automated feature extraction and Long Short-Term Memory (LSTM) networks for accurately predicting Remaining Useful Life (RUL).

This book moves beyond theory, grounding every concept in practical application with detailed case studies on benchmark industrial datasets and a full annex of illustrative Python code. You will also explore advanced frontiers, including Transfer Learning to overcome data scarcity, Federated Learning for privacy-preserving collaboration, and the adaptive potential of Reinforcement and Continual Learning.

Whether you are a mechanical engineer seeking to leverage data, a data scientist entering the industrial domain, or a student building a foundational skill set, this book provides the critical knowledge and practical tools to transform vibration data into reliable, automated, and predictive maintenance solutions.

Contents

Basics of Machine Learning for Vibration Analysis.- Advanced Signal Preprocessing and Feature Engineering.- Supervised Learning: From Traditional Methods to Feedforward Neural Networks  25.- Deep Learning with Convolutional Neural Networks for Vibration Analysis  30.

最近チェックした商品