Advanced Analytics and Learning on Temporal Data : 10th ECML PKDD Workshop, AALTD 2025, Porto, Portugal, September 19, 2025, Revised Selected Papers (Lecture Notes in Computer Science 16255) (2026. xxv, 210 S. XXV, 210 p. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Advanced Analytics and Learning on Temporal Data : 10th ECML PKDD Workshop, AALTD 2025, Porto, Portugal, September 19, 2025, Revised Selected Papers (Lecture Notes in Computer Science 16255) (2026. xxv, 210 S. XXV, 210 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032155344

Full Description

This book constitutes the revised selected papers of the 10th ECML PKDD workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2025, held in Porto, Portugal, on September 19, 2025.

The 13 full papers presented here were carefully reviewed and selected from 22 submissions. The papers focus on the following topics: Clustering and Analysis of Time Series; Forecasting and Prediction; Analysis and Processing of Time Series; Models and Approaches Based on Deep Learning and LLMs; Time Series Classification; Augmentation, Imputation, and Preprocessing Techniques.

Contents

e-SMOTE: a train set rebalancing algorithm for time series classification.- The Next Motif: Tapping into Recurrence Dynamics and Precursor Signals to Forecast Events of Interest.- Re-framing Time Series Augmentation Through the Lens of Generative Models.- FuelCast: Benchmarking Tabular and Temporal Models for Ship Fuel Consumption.- MoTM: Towards a Foundation Model for Time Series Imputation based on Continuous Modeling.- A Deep Dive into Alternatives to the Global Average Pooling for Time Series Classification.- Adaptive Fine-Tuning via Pattern Specialization for Deep Time Series Forecasting.- Unsupervised Feature Construction for Time Series Anomaly Detection - An Evaluation.- Multi-output Ensembles for Multi-step Forecasting.- Time series extrinsic regression algorithms for forecasting long time series with a short horizon.- Towards a Library for the Analysis of Temporal Sequences.- FiTEM: Fine-tuning Time-series Foundation Models for Selective Forecasting.- T3A-LLM: A Two-Stage Temporal Knowledge Graph Alignment Method Enhanced by LLM.

最近チェックした商品