Competing Operators and Their Applications to Boundary Value Problems (SpringerBriefs in Mathematics) (2026. xi, 101 S. XI, 101 p. 235 mm)

個数:
  • 予約

Competing Operators and Their Applications to Boundary Value Problems (SpringerBriefs in Mathematics) (2026. xi, 101 S. XI, 101 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032154446

Full Description

This book addresses problems driven by differential operators that lack monotonicity. The authors' methods rely on coercivity and continuity, allowing for the construction of an approximative scheme whose convergence is induced by coercivity.

This observation leads to a new type of solution, which is precisely a limit of finite-dimensional approximation schemes and leads to the weak solution, provided that the operator driving the equation is at least pseudomonotone. This new type of solution is called a generalized solution. To systematically treat its existence, the authors introduce an abstract existence tool that serves as a counterpart to the Browder-Minty Theorem in the non-variational case and the Weierstrass-Tonelli Theorem if the problem is potential. Thus, the authors utilize many already developed techniques, suitably modified due to the absence of the monotonicity assumption.

The authors obtain three abstract results, also in the non-smooth case, which they apply to nonlinear boundary value problems. In their applications, they also deal with problems depending on an unbounded weight, which forces them to implement a suitable truncation technique.

The book includes an extended chapter covering analysis on abstract tools from the theory of monotone operators and minimization techniques, supplied with proofs and comments that allow for a better understanding of the authors' approach towards generalized solutions. It includes necessary background on Sobolev spaces, introduces the non-variational generalized solution, and investigates the existence of solutions for variational problems and inclusions.

Contents

Introduction.- Background from function spaces.- A resume on existence methods.- Generalized solutions for non-potential problems.- Generalized solutions - variational problems.- Generalized solutions for inclusions.- Index.- References.

最近チェックした商品