Competing Operators and Their Applications to Boundary Value Problems (SpringerBriefs in Mathematics)

個数:
  • ポイントキャンペーン

Competing Operators and Their Applications to Boundary Value Problems (SpringerBriefs in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032154446

Full Description

This book addresses problems driven by differential operators that lack monotonicity. The authors' methods rely on coercivity and continuity, allowing for the construction of an approximative scheme whose convergence is induced by coercivity.

This observation leads to a new type of solution, which is precisely a limit of finite-dimensional approximation schemes and leads to the weak solution, provided that the operator driving the equation is at least pseudomonotone. This new type of solution is called a generalized solution. To systematically treat its existence, the authors introduce an abstract existence tool that serves as a counterpart to the Browder-Minty Theorem in the non-variational case and the Weierstrass-Tonelli Theorem if the problem is potential. Thus, the authors utilize many already developed techniques, suitably modified due to the absence of the monotonicity assumption.

The authors obtain three abstract results, also in the non-smooth case, which they apply to nonlinear boundary value problems. In their applications, they also deal with problems depending on an unbounded weight, which forces them to implement a suitable truncation technique.

The book includes an extended chapter covering analysis on abstract tools from the theory of monotone operators and minimization techniques, supplied with proofs and comments that allow for a better understanding of the authors' approach towards generalized solutions. It includes necessary background on Sobolev spaces, introduces the non-variational generalized solution, and investigates the existence of solutions for variational problems and inclusions.

Contents

Introduction.- Background from function spaces.- A resume on existence methods.- Generalized solutions for non-potential problems.- Generalized solutions - variational problems.- Generalized solutions for inclusions.- Index.- References.

最近チェックした商品