Practical Neural Networks in Python and MATLAB (2026. xii, 146 S. XII, 146 p. 28 illus., 27 illus. in color. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Practical Neural Networks in Python and MATLAB (2026. xii, 146 S. XII, 146 p. 28 illus., 27 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032147455

Full Description

A Comprehensive Guide to Theory and Implementation.

Bridging the gap between theory and practice with this extensive guide to neural networks, featuring parallel implementations in both Python and MATLAB.

Navigating the complex landscape of neural networks requires not only a firm grasp of theoretical foundations but also the practical skills to implement them effectively. Practical Neural Networks in Python and MATLAB is designed to be a definitive resource, offering a unique dual-language approach to mastering these powerful models.

Key Features:

A Dual-Language, Integrated Approach: This book provides a side-by-side exploration of neural networks in both Python and MATLAB. This methodology allows you to leverage Python's rich deep learning ecosystem (TensorFlow, Keras, PyTorch) and MATLAB's specialized toolboxes, giving you the flexibility to work within your preferred environment or across different project requirements.
Comprehensive Coverage of Algorithms and Architectures: Move beyond basic backpropagation. The text provides a systematic review of fundamental and advanced training algorithms, including Gradient Descent, Newton's Method, Levenberg-Marquardt, Recursive Least Squares (RLS), and metaheuristics like Genetic Algorithms and Particle Swarm Optimization. Furthermore, it offers a detailed survey of over 25 major neural network architectures, from foundational Perceptrons and Feedforward Networks to advanced systems like CNNs, RNNs (LSTM, GRU), Autoencoders, GANs, and Deep Belief Networks.
Practical, Code-Oriented Learning: Each concept and architecture is accompanied by ready-to-run code examples. This practical focus ensures that you can immediately translate theoretical understanding into functional code, experiment with parameters, and adapt the implementations to your own unique challenges.
Real-World Application and Case Studies: The learning is grounded in practicality through diverse case studies across multiple domains. You will find applications in medical diagnostics (e.g., diabetes classification), time-series forecasting (e.g., air quality prediction), system identification, natural language processing, and more. These examples provide complete pipelines from data preprocessing and model training to evaluation and visualization.

This Book is Ideal For:

University students and researchers in Computer Science, Artificial Intelligence, Engineering, and related fields.
R&D engineers and scientists working in algorithm development, data analysis, and intelligent systems.
Any practitioner seeking a thorough, hands-on understanding of neural networks with the flexibility to work in both Python and MATLAB environments.

In essence, Practical Neural Networks in Python and MATLAB serves as an invaluable companion for anyone looking to deepen their expertise in neural networks. It is more than a textbook; it is a practical toolkit designed to accelerate your research, enhance your projects, and provide a clear, comprehensive reference for the key architectures and algorithms shaping the field of AI today.

Contents

 Introduction.- Multilayer Perceptron (MLP) Neural Networks.- Recursive Least Squares (RLS) Based Neural Network Training.-  Neural Networks Training Based on Second-Order Optimization Technique.-  Neural Network Training Based on Genetic Algorithm.- Neural Network Training Based on Particle Swarm Optimization (PSO).-  UKF-based Neural Network Training.-  Introduction of Machine learning libraries in Python with illustrative examples.-  A summary of different type of neural networks in Matlab and Python.- Bibliography.

最近チェックした商品