Information Theory, Probability and Statistical Learning : A Festschrift in Honor of Andrew Barron (2026. Approx. 400 p. 30 illus. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Information Theory, Probability and Statistical Learning : A Festschrift in Honor of Andrew Barron (2026. Approx. 400 p. 30 illus. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032139917

Full Description

In 2024, Andrew Barron turned 65 and retired. This is a Festschrift volume honoring his career and contributions. Andrew R. Barron, a professor of Statistics and Data Science at Yale University, has been one of the most influential figures in information theory research over the past 40 years. He has made profound, broad and consistent contributions to information theory, as well as its interactions with probability theory, statistical learning, and neural networks. From his Ph.D. thesis work in 1985 until today, Barron has been recognized as a leader in both information theory and statistics, especially in the area where the two fields intersect and fertilize each other. There has been a powerful tradition of important work on this interface and it has had a strong impact on both fields. Through the introduction of novel ideas and techniques, and through his outstanding scholarship, Barron has clarified some of the foundations of the mathematical and statistical side of Shannon theory, and he has helped solidify our understanding of the connection between information theory and statistics. This volume consists of invited papers, by prominent researchers that - either personally or through the topics of the work - have some connection with Barron. The papers in this volume are written by people working in all three areas where Barron has made major contributions: Information theory, probability, and statistical learning. These topics are very timely as there is major current activity in all three areas, especially in connection with the explosive current advances in machine learning theory and its applications.

Contents

Information Theory.-Probability Theory.- Statistical Learning.

最近チェックした商品