An Introduction to Mathematical Programming and Network Science : Examples with Theory and Python (Springer Undergraduate Texts in Mathematics and Technology) (2026. xvi, 291 S. XVI, 291 p. 51 illus., 30 illus. in color. 235 mm)

個数:
  • 予約

An Introduction to Mathematical Programming and Network Science : Examples with Theory and Python (Springer Undergraduate Texts in Mathematics and Technology) (2026. xvi, 291 S. XVI, 291 p. 51 illus., 30 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032133298

Full Description

This text provides a practical, hands-on introduction to the fundamental concepts of mathematical programming and network science. Particular emphasis is placed on linear programming, mathematical modelling and case studies, the implementation of the Simplex Method in Python, and classical techniques from nonlinear convex programming. The text also features a discussion of mathematical programming within the context of algebraic modelling languages.  Further, it includes material on matrix games, decision analysis, multicriteria optimization and non-directed networks.

Designed as an introductory resource for upper-level undergraduate and graduate students, the book assumes only a modest mathematical background. Readers who have completed a second course in linear algebra, multivariable calculus, and an introductory course in probability and statistics will find the more advanced portions of the text especially accessible. Researchers and professionals in mathematics, engineering, technology, economics, business, and other quantitatively oriented fields will also find this book a valuable reference.

A distinguishing feature of this text is its strong emphasis on case studies. Numerous examples are developed in detail, either worked out within the text or explored through exercises and abstract model formulations. This pedagogical approach fosters both intuition and a structured understanding of the representative models that form the foundation of the field. A rich collection of end-of-chapter exercises enables readers to apply concepts and deepen their mastery of the material. A chapter dependency chart further supports independent learners by suggesting an effective study sequence and assists instructors in organizing coherent course structures.

Contents

1 Introduction.- 2 Linear programming models—a collection of case study examples.- 3 Towards a theory for mathematical programming problems.- 4 Introduction to Tucker Tableau and duality theory for linear programming.- 5 Simplex Algorithm via Tucker Tableau.- 6 Using computer software to solve linear programming problems.- 7 Transportation and assignment problems.- 8  Network Flow problems.- 9. Selected introduction to nonlinear programming.- 10 More general convex functions, Lagrangians and KKT conditions.- 11 Using computer software to solve selected nonlinear programming.- 12 Introduction to game theory, decision analysis and multicriteria optimization.- 13 Introduction to non-directed networks.- Appendix A Solving systems of linear equations.- Appendix B Convexity and optimization of smooth functions in dimensions one and two.- Appendix C Solution sketches to selected problems.- References.- Index.

最近チェックした商品