Covariance Analysis and Beyond

個数:
  • 予約

Covariance Analysis and Beyond

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 394 p.
  • 言語 ENG
  • 商品コード 9783032087959

Full Description

This book demonstrates the application of covariance matrices through cutting-edge models and practical applications as well as extensions induced by multivariate data and other related subjects. In data analysis, when studying the relationships among a set of variables, the covariance matrix plays an important role. It has been commonly and widely used across many fields, including agriculture, biology, business, communications, economics, engineering, finance, marketing, mathematics, medicine, data science, and social science, regardless of whether the data is dense or sparse, low-dimension or high-dimension, time series or non-time series, structured or unstructured, fixed or random, and training (learning) data or testing data.  The covariance matrix is fundamental for extracting valuable information from multivariate data, such that this classical tool can be influential in modern data science and innovative statistical models.

Specifically, this book utilizes the covariance matrix to comprehensively unify classical multivariate methods (e.g., principal components and factor analysis) and innovative models and algorithms (e.g., spatial autoregressive and network autocorrelation models, matrix factor models, tensor covariance models, deep learning, and transfer learning). In so doing, it surveys statistical and data science techniques for estimation, selection, prediction, inference, and decision making. As a result, the book provides a unique approach for readers to understand how the traditional and modern techniques in data analysis, such as multivariate analysis and machine learning, can be unified with different features but the same foundation, which is the covariance matrix. This book is suitable for graduate students and researchers across various quantitative disciplines.

Contents

Chapter 1 Introduction.- Chapter 2 Covariance Matrices, Precision (Concentration) Matrices, Estimations, and Tests.- Chapter 3 Structured Covariance Matrices and Unconstrained Parameterizations.- Chapter 4 Covariance Regression Models.- Chapter 5 Covariance-Mean Regression Models.- Chapter 6 Fixed and Random Covariance Models.- Chapter 7 Spatial and Network Autoregressive Models.- Chapter 8 Factor Models and Covariance Matrices.- Chapter 9 Machine Learning and Covariance Matrices.- Chapter 10 Tensor Analysis and Covariance Matrices.

最近チェックした商品