Natural Language Interfaces for Databases with Deep Learning : The Never-Ending Quest for Data Accessibility (Data-centric Systems and Applications)

個数:
  • 予約

Natural Language Interfaces for Databases with Deep Learning : The Never-Ending Quest for Data Accessibility (Data-centric Systems and Applications)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9783032069047

Full Description

This book covers the main research areas that aim to bridge the world of databases and SQL with the world of natural language. It provides a comprehensive coverage of the most influential work in the field that takes advantage of deep learning. Enabling users to access databases using natural language has been a longstanding goal since the inception of relational databases, that despite continued efforts remains an open challenge. However, the advancement of neural networks has given new life to this area, inspiring a new wave of works in multiple directions.

Starting with an introduction on the history of natural language interfaces to databases (NLIDBs) and a brief neural primer on deep learning architectures frequently mentioned throughout the book, the initial chapters focus on the Text-to-SQL problem. There, an overview of the problem is given, followed by a general architecture of Text-to-SQL systems and a deeper analysis of specific systems. Additionally, the reverse process of explaining an SQL query (i.e., SQL-to-Text) is examined, along with open research problems and the currently available solutions. The book continues with the multi-turn Text-to-SQL problem, that enables users to make corrections or ask follow-up questions, outlining the underlying system architectures, and introducing key representative systems. To put everything into perspective the subsequent chapter takes a broader look at the more general areas of code understanding and generation that encapsulate the problems discussed in the previous chapters. Moving on, the focus shifts on generating NL explanations and summaries of data (i.e., the Data-to-Text problem), offering an overview of the problem and its challenges as well as an overall system architecture and specific Data-to-Text systems. Then, bringing Data-to-Text closer to NLIDBs, the book dives deeper into the Results-to-Text problem that focuses on how to express the result of a query in user-friendly natural language. Finally, the book concludes by offering insights into how all the discussed research areas and systems can be brought together to create an NLIDB, along with risk and challenges that must be considered in the process.

This book is intended for both researchers and practitioners interested in NLIDBs, regardless of their prior familiarity with the topic. Readers with experience in this area will benefit from a structured overview and categorization of existing systems, along with an in-depth analysis of benchmarks, persistent challenges, and open research questions. Conversely, newcomers can explore the landscape of neural NLIDBs through an accessible presentation of the relevant subfields and key advancements, without requiring any prior background knowledge.

Contents

1. Natural Language Interfaces to Databases.- 2. Translating Natural Language Questions to SQL.- 3. Text-to-SQL Architecture.- 4. Text-to-SQL Systems.- 5. Describing SQL Queries in Natural Language.- 6. Multi-turn NLIDBs.- 7. The Code Generation and Summarization Problems.- 8. The Data-to-Text Problem.- 9. Table-to-Text Neural Architecture and Systems.- 10. The Results-to-Text Problem and Systems.- 11. Conclusions.

最近チェックした商品