Big Data Analytics in Biostatistics and Bioinformatics (Icsa Book Series in Statistics)

個数:
  • 予約

Big Data Analytics in Biostatistics and Bioinformatics (Icsa Book Series in Statistics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 464 p.
  • 言語 ENG
  • 商品コード 9783032066480

Full Description

This book focuses on big data analytics in biostatistics and bioinformatics. As a contributed volume, it seeks to stimulate the growth of this dynamic field in the era of artificial intelligence. By presenting an overview of recent advances in biostatistics and bioinformatics through advanced statistical and machine learning methods, the book offers valuable insights for data scientists and biostatisticians working in public health, neuroscience, and related disciplines.

It is a useful reference for graduate students and researchers across academia, industry, and government. This work is partially supported by the South African National Research Foundation (NRF) and South African Medical Research Council (SAMRC) (South African DST-NRF-SAMRC SARChI Research Chair in Biostatistics, Grant Number 114613).

Contents

Part I:  An Overview of Big Data Analytics in Biostatistics and Bioinformatics.- Chapter 1 Big Data Analytics in Biostatistics and Bioinformatics: The Past, The Present and The Future.- Chapter 2 Navigating Sample Size Dilemmas in ML-based Predictive Analytics: A Comprehensive Review.- Chapter 3 Moving Beyond Mean: Harnessing Big Data for Health Insights by Quantile Regression.- Chapter 4.  Incorrect Model Selection Using R2 and Akaike Information Criterion in Big Data Analyses.- Chapter 5 False Discovery Control in Multiple Testing: A Brief Overview of  Theories and Methodologies.-  Part II: Statistical Methods of Bayesian Analysis  and  Gene  Expression Data.- Chapter 6    Investigating and Assessing Diverse Strategies and Classification Techniques Applied in the Integration of Multi-Omics Data.- Chapter 7 Sparse Bayesian Clustering of Matrix Data.- Chapter 8  Bayesian Kernel Based Modeling and Selection of Genetic Pathways and Genes in Cancer Studies: A Step Toward Targeted Treatment Protocols.- Chapter 9   Using Guided Regularized Random Forests to Identify Important Biological Pathways and Genes.- Chapter 10    Ultrahigh-Dimensional Discriminant Analysis and Its Application to Gene Expression Data.- Part III:   Deep Learning  and Neural Network.- Chapter 11   Deep Image-on-scalar Regression Model with Hidden Confounders.- Chapter 12  Transfer Learning for Causal Effect Estimation.- Chapter 13    Hybrid Distance for Classification of Complex Biological Data Based on Elastic Shape Analysis of Curves and Topological Data Analysis of Point Clouds.- Chapter 14 Bifurcation Analysis of an Analog Hopfield Neural Network with Three Time Delays.- Chapter 15   Advancing Information Integration through Empirical Likelihood: Selective Reviews and a New Idea.- Part IV:   Clinical Trials and Survival Analysis.-  Chapter 16  Hierarchical Semi-parametric Bayesian Modeling in Patient Screening and Enrollment Dynamic Prediction for Multicenter Clinical Trials.- Chapter 17   Comparative Effectiveness Analysis of Lobectomy and Limited Resection for Elderly Non-Small Cell Lung Cancer Patients via Emulation.- Chapter 18  Recent Developments in Joint Modeling for Recurrent Gap Times with a Terminal Event.- Chapter 19 A Conditional Modelling Approach for Dynamic Risk Prediction of a Survival Outcome Using Longitudinal Biomarkers with an Application to Ovarian Cancer.

最近チェックした商品