Computational Mathematics Modeling in Cancer Analysis : 4th International Workshop, CMMCA 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 27, 2025, Proceedings (Lecture Notes in Computer Science)

個数:
  • 予約

Computational Mathematics Modeling in Cancer Analysis : 4th International Workshop, CMMCA 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 27, 2025, Proceedings (Lecture Notes in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783032066237

Full Description

This book constitutes the refereed proceedings of the 4th International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2025, held in Daejeon, South Korea, during September 27, 2025, in conjunction with MICCAI 2025.

The 17 full papers presented in this book were carefully reviewed and selected from 24 submissions. These papers focus on algorithmic and mathematical innovations that advance cancer imaging and analysis across spatial, temporal, and biological scales.

Contents

.- A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration.

.- A Data-Driven Approach to Optimise Parameters of a Computational Digital Twin Model in Response to SBRT on MR-Linac.

.- FMIC-AI: Annotation-Free Tumor Cell Detection in Fluorescence Microscopy via Self-Supervised Anomaly Detection.

.- Score-based Diffusion Model for Unpaired Virtual Histology Staining.

.- Redefining Spectral Unmixing for In-Vivo BrainTissue Analysis from Hyperspectral Imaging.

.- CT Image Segmentation Using Frequency Domain Feature-Assisted Selective Long Memory State Space Model.

.- Towards Robust Skin Lesion Classification: Lesion Segmentation, Mole Collision Simulation and Hierarchical learning.

.- Key Clinical Parameters Detection and Ovarian Tumor Benign/Malignant Classification in Multi-Modal Ultrasound Images via a Multi-Task Model.

.- OG-SAM: Enhancing Multi-Organ Segmentation with Organogenesis-Based Adaptive Modeling.

.- CoMoSeg: Anatomical Consistency and Cross Modality Guidance for Robust Brain Tumor Segmentation Using Partially Labeled MR Sequences.

.- Region-aware Diagnosis of Clinically Significant Prostate Cancer via Semi-supervised Learning Segmentation.

.- GraphMMP: A Graph Neural Network Model with Mutual Information and Global Fusion for Multimodal Medical Prognosis.

.- Dual-Guided 3D Liver CT Image Generation for Medical Analysis.

.- HaDM-ST: Histology-Assisted Differential Modeling for Spatial Transcriptomics Generation.

.- Projection-Driven Robust Motion Compensation for CBCT Using a Patient-Specific Model Learned from Prior Scans.

.- Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet.

.- Hierarchical Brain Structure Modeling for Predicting Genotype of Glioma.

最近チェックした商品