Computational Bioacoustic Artificial intelligence (Sustainable Artificial Intelligence-powered Applications)

個数:
  • 予約

Computational Bioacoustic Artificial intelligence (Sustainable Artificial Intelligence-powered Applications)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032060877

Full Description

This book deep dives into the theoretical background of bioacoustics, signal processing techniques, feature extraction and pattern recognition algorithms, and technically advanced case studies in bioacoustics AI. By exploring the intricate characteristics of bioacoustic signals, this book offers a comprehensive understanding of the underlying principles and practical implementations. The fundamental chapters provide readers the basics by discussing the statistical and deterministic models of bioacoustic signals, including parametric and non-parametric approaches, time-frequency representations, and stochastic processes. Furthermore, this book delves into the complexities of bioacoustic signal generation and propagation, considering physiological factors, acoustic media, and signal degradation. The feature engineering methodology upon the complex and noisy sound data is understood and explored using advanced signal processing techniques, such as wavelet transforms, matching pursuit, higher-order statistics, and fractal analysis. The subsequent chapters focus on feature engineering and pattern recognition. The feature extraction methods under subject of discussion include time-domain, frequency-domain, and time-frequency features, as well as statistical and structural features. The advanced techniques related to deep learning such as convolutional neural networks and recurrent neural networks are also explored. Traditional classification techniques, including statistical pattern recognition and syntactic pattern recognition, are covered, followed by a deep dive into the application of deep learning for bioacoustic classification. The later chapters detail on the futuristic topics such as bioacoustic localization, source separation, change detection, and monitoring. The bioacoustic data collected with other sensor modalities are significant in the development of bioacoustic indices. This book leads the assessment techniques to determine the quality of ecosystem and its performance. Furthermore, the application of bioacoustic AI in man-machine interaction is examined.

Contents

1. Advanced Signal Processing Techniques in Bioacoustics by Elevating Wildlife Monitoring.- 2.Leveraging Advanced Deep Learning Techniques for Enhanced Bioacoustic Classification.- 3. Deep Neural Networks and Wavelet Transforms for Bioacoustic Classification.- 4. Ethical Considerations and Societal Impact.- 5. OPTIMIZING BIOACOUSTIC SIGNAL CLASSIFICATION USING AI-ENHANCED TRADITIONAL ALGORITHMS.- 6. AI-POWERED BIOACOUSTIC METHODS FOR EARLY WARNING OF NATURAL DISASTERS THROUGH ANIMAL BEHAVIORAL CUES.- 7. Artificial Intelligence in Agriculture: Technology-Powered Strategies for a Sustainable Farming Future.- 8. Optimizing Bioacoustic Classification: Deep Metric Learning and Contrastive Embedding Techniques for Unlabeled Acoustic Data.- 9. Integrating Bioacoustic Sensors for Improved Human-Computer Interaction.- 10. Recent Advances in Bioacoustic Data Fusion and Multimodal Analysis.- 11. Acoustic Analysis: Traditional Classification Methods in Bioacoustics.- 12. Enhancing Human-Computer Interaction with Bioacoustics: Techniques and Applications.- 13. Bioacoustics Feature Engineering: Techniques and Applications for Ecological Insight.- 14. Detection of Ecosystem Changes Using Bioacoustics Techniques.- 15. Advanced Techniques for Ecological Research using Bioacoustic Signal Processing.- 16. Ethical and Privacy Considerations in AI-Driven Wildlife Monitoring.

最近チェックした商品