Fairness of AI in Medical Imaging : Third International Workshop, FAIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings (Lecture Notes in Computer Science)

個数:
  • 予約

Fairness of AI in Medical Imaging : Third International Workshop, FAIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings (Lecture Notes in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 222 p.
  • 言語 ENG
  • 商品コード 9783032058690

Full Description

This book constitutes the refereed proceedings of the Third International Workshop, FAIMI 2025, held in conjunction with MICCAI 2025, Daejeon, South Korea, in September 23, 2025.

The 21 full papers presented in this book were carefully reviewed and selected from 29 submissions.

FAIMI aimed to raise awareness about potential fairness issues in machine learning within the context of biomedical image analysis.

 

Contents

.- LTCXNet: Tackling Long-Tailed Multi-Label Classification and Racial
Bias in Chest X-Ray Analysis.

.- Fairness and Robustness of CLIP-Based Models for Chest X-rays.

.- ShortCXR: Benchmarking Self-Supervised Learning Methods for
Shortcut Mitigation in Chest X-Ray Interpretation.

.- How Fair Are Foundation Models? Exploring the Role of Covariate
Bias in Histopathology.

.- The Cervix in Context: Bias Assessment in Preterm Birth Prediction.

.- Identifying Gender-Specific Visual Bias Signals in Skin Lesion Classification.

.- Fairness-Aware Data Augmentation for Cardiac MRI using
Text-Conditioned Diffusion Models.

.- Exploring the interplay of label bias with subgroup size and separability:
A case study in mammographic density classification.

.- Does a Rising Tide Lift All Boats? Bias Mitigation for AI-based CMR
Segmentation.

.- MIMM-X: Disentangeling Spurious Correlations for Medical Image
Analysis.

.- Predicting Patient Self-reported Race From Skin Histological Images
with Deep Learning.

.- Robustness and sex differences in skin cancer detection: logistic
regression vs CNNs.

.- Sex-based Bias Inherent in the Dice Similarity Coefficient: A Model
Independent Analysis for Multiple Anatomical Structures.

.- The Impact of Skin Tone Label Granularity on the Performance and
Fairness of AI Based Dermatology Image Classification Models.

.- Causal Representation Learning with Observational Grouping for CXR
Classification.

.- Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts
in MRI-based Alzheimer's Disease Classification.

.- Fair Dermatological Disease Diagnosis through Auto-weighted
Federated Learning and Performance-aware Personalization.

.- Assessing Annotator and Clinician Biases in an Open-Source-Based
Tool Used to Generate Head CT Segmentations for Deep Learning
Training.

.- meval: A Statistical Toolbox for Fine-Grained Model Performance Analysis.

.- Revisiting the Evaluation Bias Introduced by Frame Sampling
Strategies in Surgical Video Segmentation Using SAM2.

.- Disentanglement and Assessment of Shortcuts in Ophthalmological
Retinal Imaging Exams.

最近チェックした商品