A Practical Guide to Optimization in Engineering and Data Science

個数:
  • ポイントキャンペーン

A Practical Guide to Optimization in Engineering and Data Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 325 p.
  • 言語 ENG
  • 商品コード 9783032046321

Description

This book offers a hands-on and comprehensive guide to optimization techniques tailored for data scientists and engineers, combining theoretical foundations with practical applications. It begins by demystifying core concepts and types of optimization, then explores their relevance across engineering and data science domains. Readers are introduced to essential mathematical tools, single- and multi-objective optimization methods, and a wide range of algorithms including gradient-based techniques, evolutionary strategies, and swarm intelligence. The book also lists real-world applications across industries and provides several Python-based examples, enabling readers to implement and experiment with optimization models in practice. With its structured approach and rich set of examples, this book serves as a valuable resource for professionals and researchers seeking to apply optimization effectively in their work.

1. Grokking Optimization.- 2. Essential Mathematics for Optimization.- 3. Single-Objective Optimization Techniques.- 4. Metaheuristics for Single-Objective Optimization.- 5. Multi-Objective Optimization.- 6. Applications of Optimization.- 7. Practical Optimization Examples with Python.

Wellington Rodrigo Monteiro received his Ph.D. in Industrial and Systems Engineering from the Pontifical Catholic University of Parana (PUCPR), Brazil, a Master s in Industrial and Systems Engineering from PUCPR, and a Bachelor s in Computer Engineering from PUCPR. He has over ten years of experience working as a data scientist in large international corporations and startups. He works as a lead machine learning engineer at Nubank and as an assistant professor at PUCPR. His interests are rooted in machine learning, evolutionary algorithms, and multi-objective optimization applications in the industry.

Gilberto Reynoso Meza received his Ph.D. in Automation from the Universitat Politècnica de València (Spain) and his B.Sc. (2001) in Mechanical Engineering from the Tecnológico de Monterrey, Campus Querétaro (Mexico). Currently, he is with the Industrial and Systems Engineering Graduate Program (PPGEPS) of the Pontifical Catholic University of Parana (PUCPR), Brazil, as an associate Professor. His main research interests are computational intelligence methods for control engineering, multi-objective optimization, many-objectives optimization, multi-criteria decision-making, evolutionary algorithms, and machine learning.


最近チェックした商品