データ科学と最適化<br>Data Science and Optimization (Fields Institute Communications)

個数:

データ科学と最適化
Data Science and Optimization (Fields Institute Communications)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 335 p.
  • 言語 ENG
  • 商品コード 9783032038432

Description

Data science and optimization are increasingly intertwined as both focus on developing computational and methodological approaches to tackling large and otherwise complex datasets. Optimization is primarily concerned with accuracy, computational efficiency, and robustness while data science emphasizes achieving effective results on real datasets. Although some data science approaches involve the implicit optimization of objective functions, there remains a dearth of work that brings advanced optimization techniques to bear on data science problems. The goal of the Fields Focus Program on Data Science and Optimization held in November 2019 at the Fields Institute in Toronto, was to bring together researchers in data science and optimization, both theoretical and applied, in an effort to bridge the fields and stimulate cross-disciplinary interaction and collaboration.

In the spirit of the program, this volume compiles recent development and connections in the fields of data science and optimization, and the ways in which they overlap. It features novel results and state-of-the-art surveys as well as open problems.

Preface.- A General Algorithm for Assortment Optimization Under Random Utility Choice Models.- Design of Poisoning Attacks on Linear Regression Using Bilevel Optimization.- 1-norm Minimization and Minimum-Rank Structured Sparsity for Symmetric and Ah-Symmetric Generalized Inverses: Rank One and Two.- Local and Global Uniform Convexity Conditions.- A Symmetric Loss Perspective of Reliable Machine Learning.- Decoding Noisy Messages: A Method that Just Shouldn't Work.- On Reduction of the Switching Graph Problem to the Independent Set Problem.- Outer Approximations of Core Points for Integer Programming.- Sizing the White Whale.- Too Many Fairness Metrics: Is There a Solution? Equity Across Demographic Groups for the Facility Location Problem.- Adaptive First- and Second-Order Algorithms
for Large-Scale Machine Learning.- Second-Order Conditional Gradient Sliding.- Combinatorial Pure Exploration with Full-Bandit Feedback and Beyond: Solving Combinatorial Optimization Under Uncertainty with Limited Observation.