Causal Discovery : Foundations, Algorithms and Applications (Computer Science Foundations and Applied Logic) (2025. xv, 230 S. XV, 230 p. 235 mm)

個数:

Causal Discovery : Foundations, Algorithms and Applications (Computer Science Foundations and Applied Logic) (2025. xv, 230 S. XV, 230 p. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031983443

Full Description

This book presents an overview of causal discovery, an emergent field with important developments in the last few years, and multiple applications in several fields.

The book is divided into three parts. The first part provides the necessary background on causal graphical models and causal reasoning. The second describes the main algorithms and techniques for causal discovery: (a) causal discovery from observational data, (b) causal discovery from interventional data, (c) causal discovery from temporal data, and (d) causal reinforcement learning. The third part provides several examples of causal discovery in practice, including applications in biomedicine, social sciences, artificial intelligence and robotics.

Topics and features:

Includes the necessary background material: a review of probability and graph theory, Bayesian networks, causal graphical models and causal reasoning
Covers the main types of causal discovery: learning from observational data, learning from interventional data, and learning from temporal data
Illustrates the application of causal discovery in practical problems
Includes some of the latest developments in the field, such as continuous optimization, causal event networks, causal discovery under subsampling, subject specific causal models, and causal reinforcement learning
Provides chapter exercises, including suggestions for research and programming projects

This book can be used as a textbook for an advanced undergraduate or a graduate course on causal discovery for students of computer science, engineering, social sciences, etc. It can also be used as a complement to a course on causality, together with another text on causal reasoning. It could also serve as a reference book for professionals that want to apply causal models in different areas, or anyone who is interested in knowing the basis of these techniques.

 

The intended audience are students and professionals in computer science, statistics and

engineering who want to know the principles of causal discovery and / or applied them in different

domains. It could also be of interest to students and professionals in other areas who want to apply

causal discovery, for instance in medicine and economics.

Contents

1. Introduction.- 2. Causality.- 3. Causal Graphical Models.- 4. Causal Discovery from Observational Data.- 5. Causal Discovery from Interventional Data.- 6. Causal Discovery in Time Series.- 7. Causal Reinforcement Learning.

最近チェックした商品