Data Visualization with Category Theory and Geometry : With a Critical Analysis and Refinement of UMAP (Mathematics of Data)

個数:

Data Visualization with Category Theory and Geometry : With a Critical Analysis and Refinement of UMAP (Mathematics of Data)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9783031979729
  • DDC分類 516.373

Full Description

This open access book provides a robust exposition of the mathematical foundations of data representation, focusing on two essential pillars of dimensionality reduction methods, namely geometry in general and Riemannian geometry in particular, and category theory.

Presenting a list of examples consisting of both geometric objects and empirical datasets, this book provides insights into the different effects of dimensionality reduction techniques on data representation and visualization, with the aim of guiding the reader in understanding the expected results specific to each method in such scenarios.

As a showcase, the dimensionality reduction method of "Uniform Manifold Approximation and Projection" (UMAP) has been used in this book, as it is built on theoretical foundations from all the areas we want to highlight here. Thus, this book also aims to systematically present the details of constructing a metric representation of a locally distorted metric space, which is essentially the problem that UMAP is trying to address, from a more general perspective. 

Explaining how UMAP fits into this broader framework, while critically evaluating the underlying ideas, this book finally introduces an alternative algorithm to UMAP. This algorithm, called IsUMap, retains many of the positive features of UMAP, while improving on some of its drawbacks.

Contents

Chapter 1. Introduction.- Chapter 2. Illustrating UMAP on some simple data sets.- Chapter 3. Metrics and Riemannian manifolds.- Chapter 4.  Merging fuzzy simplicial sets and metric spaces: A category theoretical approach.- Chapter 5. UMAP.- Chapter 6.  IsUMap: An alternative to the UMAP embedding.

最近チェックした商品