Multiple Information Source Bayesian Optimization (Springerbriefs in Optimization)

個数:
電子版価格
¥9,622
  • 電子版あり

Multiple Information Source Bayesian Optimization (Springerbriefs in Optimization)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 104 p.
  • 言語 ENG
  • 商品コード 9783031979644

Full Description

The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process" methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications. 

The book will be useful to two main audiences:

1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization

2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology.  

Contents

Preface.- Introduction.- MISO-AGP: dealing with multiple information sources via Augmented Gaussian Process.- MISO-AGP in action: selected applications.- Bayesian Optimization and Large Language Models.- References.

最近チェックした商品