Recent Advances in Deep Learning for Medical Image Analysis : Paradigms and Applications (Intelligent Systems Reference Library)

個数:

Recent Advances in Deep Learning for Medical Image Analysis : Paradigms and Applications (Intelligent Systems Reference Library)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9783031947902

Full Description

This book is a valuable resource for understanding the transformative role of artificial intelligence in modern healthcare and aims to inspire continued research and collaboration across disciplines. In recent years, deep learning has emerged as a transformative technology across various fields, with medical image analysis standing out as one of its most impactful applications. This book offers a comprehensive overview of the latest developments in this fast-evolving domain, bridging foundational principles with state-of-the-art techniques that are redefining the future of medical imaging.
 
This book is structured in two parts—Part I: Deep Learning Fundamentals and Paradigms and Part II: Advanced Deep Learning for Medical Image Analysis. The book provides in-depth coverage of essential topics, including convolutional neural networks, attention mechanisms, transformer architectures, multimodal analysis, semi-supervised learning, domain adaptation, generative models, and foundation models for large-scale pretraining.
 
This book is intended for a broad audience, including graduate students, academic researchers, and industry professionals in computer science, biomedical engineering, and healthcare technologies. It serves as both an introductory guide and a reference resource for those seeking to deepen their knowledge in this rapidly evolving area.

Contents

Deep Convolutional Neural Networks (CNNs).- Deep CNNs for Image Classification, Object Detection, and Segmentation.- Attention and Transformer Networks.- Transformer-based Approaches for Medical Image Analysis.- Deep Learning Networks for 3D Medical Image Analysis.- Multimodal Deep Learning for Medical Image Analysis.- Semi-supervised Learning for Medical Image Analysis.- Domain Adaptation and Generalization for Medical Image Analysis.- Deep Learning Models for Medical Image Translation.- Foundation Models for Medical Image Analysis.

最近チェックした商品