Essential Python for the Physicist (2ND)

個数:
  • ポイントキャンペーン

Essential Python for the Physicist (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 381 p.
  • 言語 ENG
  • 商品コード 9783031945922

Description

This second edition introduces Python programming to readers with little or no prior experience, specifically tailored for physicists and natural sciences students. The book begins with interactive Python exercises to foster familiarity with the language. It then progresses to more complex Python scripts (programs) that readers are encouraged to run on their own computers. Each program listing is thoroughly explained, and readers are encouraged to experiment by modifying code lines or blocks to observe and understand their effects. The text introduces Matplotlib graphics for creating figures representing data, function plots, and visualizations like field lines and equipotential surfaces. It also explores 3D graphics and animated function plots. A dedicated chapter covers the numerical solution of algebraic and transcendental equations.

The underlying mathematical principles are thoroughly discussed and the available Python tools for solving these equations are presented. A further chapter is dedicated to the numerical solution of ordinary differential equations (ODEs). This is of vital importance for the physicist, since differential equations are at the base of both classical physics (Newton s equations) and quantum mechanics (Schroedinger s equation). The shooting method for the numerical solution of ordinary differential equations with boundary conditions is also presented. Python programs for the solution of two quantum-mechanics problems are discussed as examples. Two chapters are dedicated to Tkinter graphics, which gives the user more freedom than Matplotlib, and to Tkinter animation. A special chapter is dedicated to computer animation involving differential equations, with a discussion of the effect of the accumulation of truncation errors, particularly relevant for such fields as molecular dynamics or celestial mechanics, which often require integrating Newton s equations over a very long time starting from some initial conditions. Symplectic algorithms for tackling this problem are introduced. Programs displaying the animation of physical problems involving the solution of ordinary differential equations (for which in most cases there is no algebraic solution) in real time are presented and discussed. Finally, 3D animation is presented with Vpython.

Preface.- 1 Python Basics and the Interactive Mode.- 2 Python Scripts.- 3 Plotting with Matplotlib.- 4 Numerical Solution of Equations.- Numerical Solution of Ordinary Dierential Equations (ODE).- 6 Tkinter Graphics.- 7 Tkinter Animation.- 8. Classes.- 9 Appendix.

Giovanni Moruzzi is a retired associate professor from the Physics Department at the University of Pisa, where he continues to teach a course on basic Python algorithms, with a particular focus on computer animation of physical phenomena.

His research interests encompass atomic and molecular spectroscopy, particularly the analysis and assignment of dense molecular spectra involving large-amplitude internal motions. He has authored over 70 papers in peer-reviewed journals and has contributed as both co-editor and co-author of two scientific books and two books on physics exercises


最近チェックした商品