Mastering Text Classification : Cutting-Edge NLP Techniques (Signals and Communication Technology)

個数:

Mastering Text Classification : Cutting-Edge NLP Techniques (Signals and Communication Technology)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 142 p.
  • 言語 ENG
  • 商品コード 9783031936111
  • DDC分類 621.3822

Description


(Text)

This book provides cutting-edge natural language processing (NLP) techniques to unlock the power of text data. It presents advanced methods for various text classification tasks, like discourse relation classification, classification in large taxonomies, and leveraging disagreement between annotators for text classification.

This book equips readers whether they are researchers or professionals, looking to apply NLP in real-world settings, with the latest advancements, and gives them the opportunity to explore techniques to handle limited data, and harness the power of pre-trained language models like BERT. By the end, readers will be equipped to tackle specific text classification challenges and advance the field of NLP.

(Table of content)

Introduction.- Handling Realistic Label Noise in BERT Text Classification.- Discourse Relations Classification and Cross-Framework Discourse Relation Classification through the Lens of Cognitive Dimensions: An Empirical Investigation.- Representation Learning for Hierarchical Classification of Entity Titles.- DAP-LeR-DAug: Techniques for enhanced Online Sexism Detection.- Automatic Detection of Generalized Patterns of Vossian Antonomasia.- Exploring BERT Models for Part-of-Speech Tagging in the Algerian Dialect.- Deep Learning-Based Claim Matching with Multiple Negatives Training.- A Neural Network Approach to Ellipsis Detection in Ancient Greek.- Conclusion.

(Author portrait)

Dr. Mourad Abbas is a professor at the University of Science and Technology, Houari Boumediene specializing in the dynamic field of natural language processing with a primary focus on the Arabic language and its diverse dialects. With a passion for pushing the boundaries of NLP, Dr. Abbas' research interests span a wide range of crucial topics, including machine translation, speech recognition, language identification, natural language understanding, and the challenges faced by under-resourced languages. Throughout his career, Dr. Abbas has made many contributions to the academic community, having published over sixty impactful papers. He has also played an important role in editing the proceedings of the International Conference on Natural Language and Speech Processing, featured in prestigious platforms like Elsevier, ACL Anthology, and IEEExplore. Recognized as an expert in his field, Dr. Abbas is actively engaged in peer review activities for distinguished journals, such as Language Resources and Evaluation, and Digital Signal Processing, along with conferences like ICASSP, Interspeech, Coling, and NAACL-HLT.

最近チェックした商品