Computer Vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, Proceedings, Part III (Lecture Notes in Computer Science)

個数:

Computer Vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, Proceedings, Part III (Lecture Notes in Computer Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p.
  • 商品コード 9783031918346

Full Description

The multi-volume set LNCS 15623 until LNCS 15646 constitutes the proceedings of the workshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024, which took place in Milan, Italy, during September 29-October 4, 2024. 

These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.

Contents

Wild Berry image dataset collected in Finnish forests and peatlands using drones.- Soybean pod and seed counting in both outdoor fields and indoor laboratories using unions of deep neural networks.- A Framework for Enhanced Decision Support in Digital Agriculture Using Explainable Machine Learning.- Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw).- 3D Phenotyping of Canopy Occupation Volume as a Major Predictor for Canopy Photosynthesis in Rice (Oryza sativa L.).- Retrieval of sun-induced plant fluorescence in the O2-A absorption band from DESIS imagery.- Unsupervised Tomato Split Anomaly Detection using Hyperspectral Imaging and Variational Autoencoders.- KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation.- RoWeeder: Unsupervised Weed Mapping through Crop-Row Detection.- Consolidation of symbolic instances using sensor data via tracklet merging for long-term monitoring of crops.- Automated Generation of Accurate, Compact and Focused Crop and Weed Segmentation Models.- Comparative Analysis of YOLOv9, YOLOv10 and RT-DETR for Real-Time Weed Detection.- Towards Auto-Generated Ground Truth for Evaluation of Perception Systems in Agriculture.- AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models.- Deep Learning Based Growth Modeling of Plant Phenotypes.- A simple approach to pavement cell segmentation.- Enhancing weed detection performance by means of GenAI-based image augmentation.- SynthSet: Generative Diffusion Model for Semantic Segmentation in Precision Agriculture.- Robust UDA for Crop and Weed Segmentation: Multi-Scale Attention and Style-Adaptive Techniques.- Ordinal-Meta Learning for Fine-grained Fruit Quality Prediction.- Beyond Annotations: Efficient Wheat Head Segmentation Using L-Systems, Game Engines, and Student-Teacher Models.- Exploiting Boundary Loss for the Hierarchical Panoptic Segmentation of Plants and Leaves.

最近チェックした商品