組み合わせ論的集合論:強制法のためのやさしい入門(第3版)<br>Combinatorial Set Theory : With a Gentle Introduction to Forcing (Springer Monographs in Mathematics) (3. Aufl. 2025. xvii, 616 S. XVII, 616 p. 235 mm)

個数:

組み合わせ論的集合論:強制法のためのやさしい入門(第3版)
Combinatorial Set Theory : With a Gentle Introduction to Forcing (Springer Monographs in Mathematics) (3. Aufl. 2025. xvii, 616 S. XVII, 616 p. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031917516

Full Description

This book, now in a revised and extended third edition, provides a comprehensive and accessible introduction to modern axiomatic set theory.

After an overview of basic notions in combinatorics and first-order logic, and discussing in great detail the axioms of set theory, the author outlines in the second part the main topics of classical set theory, including Ramsey theory and the axiom of choice. As an application of the axiom of choice, a complete proof of Robinson's construction for doubling a ball by dividing it into only five parts is given. For the new edition, the chapter on permutation models has been extended, and recent results in set theory without the axiom of choice and about cardinal characteristics have been added. The third part explains the sophisticated technique of forcing from scratch, now including more details about iterated forcing. The technique is then used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In particular, it is shown that both Martin's Axiom and Suslin's Hypothesis are independent of the axioms of set theory. The final part, with a new chapter on Laver forcing, is mainly concerned with consistency results obtained by iterations of forcing notions such as Cohen forcing, Sacks forcing, and Mathias forcing. The part begins with an extended chapter on countable support iterations of proper forcing notions, now also including proofs of some preservation theorems such as preservation of properness and of certain ultrafilters. In the following chapters, various consistency results concerning possible relations between cardinal characteristics and the existence of Ramsey ultrafilters are presented. For example, a detailed proof of Shelah's astonishing construction of a model with finitely many Ramsey ultrafilters is given.

Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists, historical remarks, and related results at the end of the chapters, this book is also suitable for self-study.

Contents

Part I: Preliminary.- 1 The Setting.- 2 First-Order Logic in a Nutshell.- 3 Axioms of Set Theory.- Part II: Topics in Combinatorial Set Theory.- 4 Overture: Ramsey's Theorem.- 5 Cardinal Relations in ZF Only.- 6 Forms of Choice.- 7 How to Make Two Balls from One.- 8 Models of Set Theory with Atoms.- 9 Thirteen Cardinals and Their Relations.- 10 The Shattering Number Revisited.- 11 Happy Families and Their Relatives.- 12 Coda: A Dual Form of Ramsey's Theorem.- Part III: From Martin's Axiom to Cohen's Forcing.- 13 The Idea of Forcing.- 14 Martin's Axiom.- 15 The Notion of Forcing.- 16 Proving Unprovability.- 17 Models in Which AC Fails.- 18 Combining Forcing Notions.- 19 Models in Which p=c.- 20 Suslin's Problem.- Part IV: Combinatorics of Forcing Extensions.- 21 Properties of Forcing Extensions.- 22 Cohen Forcing Revisited.- 23 Sacks Forcing.- 24 Silver-Like Forcing Notions.- 25 Miller Forcing.- 26 Mathias Forcing.- 27 Laver Forcing.- 28 How Many Ramsey Ultrafilters Exist?.- 29 Suite.

最近チェックした商品