図式代数学(テキスト)<br>Diagrammatic Algebra (Universitext) (2025. xxiv, 376 S. XXIV, 376 p. 235 mm)

個数:

図式代数学(テキスト)
Diagrammatic Algebra (Universitext) (2025. xxiv, 376 S. XXIV, 376 p. 235 mm)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031888007

Full Description

Diagrammatic Algebra provides the intuition and tools necessary to address some of the key questions in modern representation theory, chief among them Lusztig's conjecture. This book offers a largely self-contained introduction to diagrammatic algebra, culminating in an explicit and entirely diagrammatic treatment of Geordie Williamson's explosive torsion counterexamples in full detail.

The book begins with an overview of group theory and representation theory: first encountering Coxeter groups through their actions on puzzles, necklaces, and Platonic solids; then building up to non-semisimple representations of Temperley-Lieb and zig-zag algebras; and finally constructing simple representations of binary Schur algebras using the language of coloured Pascal triangles. Next, Kazhdan-Lusztig polynomials are introduced, with their study motivated by their combinatorial properties. The discussion then turns to diagrammatic Hecke categories and their associated p-Kazhdan-Lusztig polynomials, explored in a hands-on manner with numerous examples. The book concludes by showing that the problem of determining the prime divisors of Fibonacci numbers is a special case of the problem of calculating p-Kazhdan-Lusztig polynomials—using only elementary diagrammatic calculations and some manipulation of (5x5)-matrices. 

Richly illustrated and assuming only undergraduate-level linear algebra, this is a particularly accessible introduction to cutting-edge topics in representation theory. The elementary-yet-modern presentation will also be of interest to experts.

Contents

Part I: Groups.- 1 Symmetries.- 2 Coxeter groups and the 15 puzzle.- 3 Composition series.- 4 Platonic and Archimedean solids and special orthogonal groups.- Part II: Algebras and representation theory.- 5 Non-invertible symmetry.- 6 Representation theory.- Part III: Combinatorics.- 7 Catalan combinatorics within Kazhdan-Lusztig theory.- 8 General Kazhdan—Lusztig theory.- Part IV: Categorification.- 9 The diagrammatic algebra for Sₘ x Sₙ ≤ Sₘ₊ₙ.- 10 Lusztig's conjecture in the diagrammatic algebra H(W,P).- Part V: Group theory versus diagrammatic algebra.- 11 Reformulating Lusztig's and Andersen's conjectures.- 12 Hidden gradings on symmetric groups.- 13 The 푝-Kazhdan-Lusztig theory for Temperley-Lieb algebras.

最近チェックした商品