Advances in Data Science : Women in Data Science and Mathematics (WiSDM) 2023 (Association for Women in Mathematics Series 37) (2025. x, 362 S. X, 362 p. 141 illus., 116 illus. in color. 235 mm)

個数:

Advances in Data Science : Women in Data Science and Mathematics (WiSDM) 2023 (Association for Women in Mathematics Series 37) (2025. x, 362 S. X, 362 p. 141 illus., 116 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031878039

Full Description

This volume features recent advances in data science ranging from algebraic geometry used for existence and uniqueness proofs of low rank approximations for tensor data, to category theory used for natural language processing applications, to approximation and optimization frameworks developed for convergence and robustness guarantees for deep neural networks. It provides ideas, methods, and tools developed in inherently interdisciplinary research problems requiring mathematics, computer science and data domain expertise. It also presents original results tackling real-world problems with immediate applications in industry and government.

Contributions are based on the third Women in Data Science and Mathematics (WiSDM) Research collaboration Workshop that took place between August 7 and August 11, 2023 at the Institute for Pure & Applied Mathematics (IPAM) in Los Angeles, California, US. The submissions from the workshop and related groups constitute a valuable source for readers who are interested in mathematically-founded approaches to modeling data for exploration, understanding and prediction.

Contents

Chapter 1: Randomized Iterative Methods for Tensor Regression Under the t-product.- Chapter 2: Matrix exponentials: Lie-Trotter-Suzuki fractal decomposition, Gauss Runge-Kutta polynomial formulation, and compressible features.- Chapter 3: An exploration of graph distances, graph curvature, and applications to network analysis.- Chapter 4: Time-Varying Graph Signal Recovery Using High-Order Smoothness and Adaptive Low-rankness.- Chapter 5: Graph-Directed Topic Models of Text Documents.- Chapter 6: Linear independent component analysis in Wasserstein space.- Chapter 7: Faster Hodgerank Approximation Algorithm for Statistical Ranking and User Recommendation Problems.- Chapter 8: A Comparison Study of Graph Laplacian Computation.- Chapter 9: Supervised Dimension Reduction via Local Gradient Elongation.- Chapter 10: Reducing NLP Model Embeddings for Deployment in Embedded Systems.- Chapter 11: Automated extraction of roadside slope from aerial LiDAR data in rural North Carolina.- Chapter 12: A non-parametric optimal design algorithm for population pharmacokinetics.- Chapter 13: Unrolling Deep Learning End-to-End Method for Phase Retrieval.- Chapter 14: Performance Analysis of MFCC and wav2vec on Stuttering Data.- Chapter 15: Active Learning for Reducing Gender Gaps in Undergraduate Computing and Data Science.- Chapter 16: Quantifying and Documenting Gender-Based Inequalities in the Mathematical Sciences in the United States.

最近チェックした商品