Pattern Recognition : 46th DAGM German Conference, DAGM GCPR 2024, Munich, Germany, September 10-13, 2024, Proceedings, Part I (Lecture Notes in Computer Science)

個数:

Pattern Recognition : 46th DAGM German Conference, DAGM GCPR 2024, Munich, Germany, September 10-13, 2024, Proceedings, Part I (Lecture Notes in Computer Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 365 p.
  • 言語 ENG
  • 商品コード 9783031851803
  • DDC分類 006.4

Full Description

This 2-volume set LNCS 15297-15298 constitutes the refereed proceedings of the 46th Annual Conference of the German Association for Pattern Recognition, DAGM-GCPR 2024, held in Munich, Germany, during September 10-13, 2024.
The 44 full papers included in these proceedings were carefully reviewed and selected from 81 submissions. They are organized in these topical sections:
Part I: Clustering and Segmentation; Learning Techniques; Medical and Biological Applications; Uncertainty and Explainability.
Part II: Modelling of Faces and Shapes; Image Generation and Reconstruction; 3D Analysis and Sythesis; Video Analysis; Photogrammetry and Remote Sensing.

Contents

.- Clustering and Segmentation.

.- PARMESAN: Parameter-Free Memory Search and Transduction for Dense Prediction Tasks.

.- A State-of-the-Art Cutting Plane Algorithm for Clique Partitioning.

.- Self-Supervised Semantic Segmentation from Audio-Visual Data.

.- BTSeg: Barlow Twins Regularization for Domain Adaptation in Semantic Segmentation.

.- Learning Techniques.

.- FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks.

.- Self-Masking Networks for Unsupervised Adaptation.

.- A Theoretical Formulation on the Use of Multiple Positive Views in Contrastive Learning

.- Decoupling of neural network calibration measures.

.- Examining Common Paradigms in Multi-Task Learning.

.- DIAGen: Semantically Diverse Image Augmentation with Generative Models for Few-Shot Learning.

.- Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval ..

.- Anomaly Detection with Conditioned Denoising Diffusion Models.

.- Medical and Biological Applications.

.- SurgeoNet: Realtime 3D Pose Estimation of Articulated Surgical Instruments from Stereo Images using a Synthetically-trained Network.

.- Foundation Models Permit Retinal Layer Segmentation Across OCT Devices.

.- Correlation Clustering of Organoid Images.

.- Animal Identification with Independent Foreground and Background Modeling.

.- Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural Networks.

.- Bigger Isn't Always Better: Towards a General Prior for Medical Image Reconstruction.

.- Uncertainty and Explainability.

.- Latent Diffusion Counterfactual Explanations.

.- Enhancing Surface Neural Implicits with Curvature-Guided Sampling and Uncertainty-Augmented Representations.

.- Uncertainty Voting Ensemble for Imbalanced Deep Regression.

.- Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning.

最近チェックした商品