t検定を越えて<br>Beyond the T-Test

個数:
電子版価格
¥21,172
  • 電子版あり

t検定を越えて
Beyond the T-Test

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 298 p.
  • 商品コード 9783031844782

Full Description

This book was inspired by years of questions asked by non-statistical professionals, from social scientists, public policy analysts, regulatory affairs specialists, engineers, and physical scientists. It provides them with both an intuitive explanation of many common statistical methods and enough mathematical background to help them justify those methods to others, such as regulatory agencies. It provides an introduction to commonly used methods that are not covered in a first elementary statistics course, such as partial least squares, MCMC, and neural networks. It also provides R code for making all the computations described in the text.

As a textbook, it could be used as a second course in statistics for non-statisticians, in fields such as social sciences, public policy, engineering, chemistry, and physics. Many first-year graduate students have had an elementary statistics course, but were not exposed to enough of the mathematics to justify the application of those methods. Furthermore, they often encounter methods and concepts not touched upon in their first statistics course. This book provides the tools required to give a deeper understanding of statistical methods without being all about theorems and proofs.

Contents

Chapter 1. Populations, Samples, Parameters, and Statistics.- Chapter 2. Some Probability Concepts.- Chapter 3. Estimation, Hypothesis Testing and the Scientific Method.- Chapter 4. Binary Random Variables and Acceptance Sampling Plans.- Chapter 5. Continuous Variables, the Normal Distribution, and the Central Limit Theorem.- Chapter 6. Continuous Variables and Acceptance Sampling Plans.- Chapter 7. Confidence.- Chapter 8. Some Confidence Interval Computations, Including Bootstrapping.- Chapter 9. Linear Regression, Correlation, and Least Squares.- Chapter 10. Analysis of Variance.- Chapter 11. Poisson and Exponential Variables, Rate, and Time-to-Event.- Chapter 12. 2k Factorial Experiments.- Chapter 13. Nonparametric Methods - Rank-Based Tests, Permutation Tests and Resampling Methods.- Chapter 14. Nonlinear and Logistic Regression.- Chapter 15. Model Building.- Chapter 16. Multivariate Analysis.- Chapter 17. Bayesian Methods - Markov Chain Montel Carlo Approach.- Chapter 18. Machine Learning and Data-Intensive Methods.- Chapter 19. Time Series and Dynamic Systems.- Index.

最近チェックした商品