Measure, Probability and Functional Analysis (Universitext) (2025. xx, 443 S. XX, 443 p. 18 illus., 14 illus. in color. 235 mm)

個数:

Measure, Probability and Functional Analysis (Universitext) (2025. xx, 443 S. XX, 443 p. 18 illus., 14 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9783031840661

Full Description

This textbook offers a self-contained introduction to probability, covering all topics required for further study in stochastic processes and stochastic analysis, as well as some advanced topics at the interface between probability and functional analysis.

The initial chapters provide a rigorous introduction to measure theory, with a special focus on probability spaces. Next, Lebesgue integration theory is developed in full detail covering the main methods and statements, followed by the important limit theorems of probability. Advanced limit theorems, such as the Berry-Esseen Theorem and Stein's method, are included. The final part of the book explores interactions between probability and functional analysis. It includes an introduction to Banach function spaces, such as Lorentz and Orlicz spaces, and to random variables with values in Banach spaces. The Itô-Nisio Theorem, the Strong Law of Large Numbers in Banach spaces, and the Bochner, Pettis, and Dunford integrals are presented. As an application, Brownian motion is rigorously constructed and investigated using Banach function space methods.

Based on courses taught by the authors, this book can serve as the main text for a graduate-level course on probability, and each chapter contains a collection of exercises. The unique combination of probability and functional analysis, as well as the advanced and original topics included, will also appeal to researchers working in probability and related fields.

Contents

- 1. Introduction - with two examples.- 2. Measure spaces and probability spaces.- 3. Construction of measure spaces.- 4. *Metric and Banach spaces.- 5. *Measures on metric spaces.- 6. Random variables and measurable maps.- 7. Independence.- 8. Integration.- 9. Convergence of random variables.- 10. The theorem of Radon-Nikodym and conditional expectation.- 11. Fourier transform and Gaussian distributions.- 12. Weak convergence.- 13. Strong law of large numbers.- 14. An ergodic theorem.- 15. Limit theorems for weak convergence.- 16. Fourier inversion formulas.- 17. Norm estimates for the Fourier transform.- 18. Riesz representation theorems.- 19. Banach function spaces.- 20. Probability in Banach spaces.- 21. Law of iterated logarithm.- 22. An application to non-life insurance.

最近チェックした商品