The Structure of Fair Solutions : Achieving Fairness in an Optimization Model (Synthesis Lectures on Operations Research and Applications) (2025. ix, 108 S. IX, 108 p. 21 illus., 11 illus. in color. 240 mm)

個数:

The Structure of Fair Solutions : Achieving Fairness in an Optimization Model (Synthesis Lectures on Operations Research and Applications) (2025. ix, 108 S. IX, 108 p. 21 illus., 11 illus. in color. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 125 p.
  • 言語 ENG
  • 商品コード 9783031821899

Full Description

This book provides a novel and unifying perspective on the structural properties of fair solutions in optimization formulations.  The book also addresses a growing interest in incorporating fairness into the models that lie behind many business and public policy decisions.   Since there are several ways to formulate fairness mathematically, the authors characterize optimal solutions that result from different formulations with the aim of informing the choice of an appropriate model for a given application.  The focus is on fairness criteria that combine efficiency with fairness since typically both are important in practice.  Most of these results are new and do not appear in the current literature. The book is directed towards a wide range of audiences including practitioners, researchers in mathematical optimization, and welfare economists. 

 In addition, this book:

Presents practical linear, nonlinear, or mixed integer programming formulations and a wide variety of fairness models
Includes detailed proofs that provide insight into the properties of each criterion
Provides guidelines for selecting a fairness model and the tendency to incentivize cooperation or competition 

About the Authors

Özgün Elçi, Ph.D., is a Research Scientist on the Modeling and Optimization team at Amazon.

John Hooker, Ph.D. is University Professor of Operations Research and T. Jerome Holleran Professor of Business Ethics and Social Responsibility, Emeritus, at Carnegie Mellon University.

Peter Zhang, Ph.D, is an Assistant Professor at Carnegie Mellon University's Heinz College of Information Systems and Public Policy.

Contents

Chapter 1. Introduction.- A Generic Optimization Model with Fairness.- Chapter 2. Hierarchical Distribution.- Chapter 3. Incentives and Sharing.- Chapter 4. Axiomatic and Bargaining Arguments.- Inequality Metrics.- Chapter 5. Maximin and Leximax Criteria.- Chapter 6. Beta Fairness.- Chspter 7. Alpha Fairness and the Nash Bargaining Solution.- Chapter 8.The Kalai-Smorodinsky Bargaining Solution.- Chapter 9. Utility Threshold Criteria.- Chapter 10. Equity Threshold Criteria.- Chapter 11. Utility Threshold Criteria with Leximax.-  Chapter 12. Summary of Results.

最近チェックした商品