Advances in Computational Intelligence : 23rd Mexican International Conference on Artificial Intelligence, MICAI 2024, Tonantzintla, Mexico, October 21-25, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

個数:

Advances in Computational Intelligence : 23rd Mexican International Conference on Artificial Intelligence, MICAI 2024, Tonantzintla, Mexico, October 21-25, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 251 p.
  • 言語 ENG
  • 商品コード 9783031755392

Full Description

The two-volume set, LNAI 15246 and 15247, constitutes the proceedings of the 23rd Mexican International Conference on Artificial Intelligence, MICAI 2024, held in Tonantzintla, Mexico in October 21-25, 2024.

The 37 full papers presented in these proceedings were carefully reviewed and selected from 141 submissions. The papers presented in these two volumes are organized in the following topical sections:

Part I - Machine Learning; Computer Vision.

Part II - Intelligent Systems; Bioinformatics and Medical Applications; Natural Language Processing.

Contents

.- Machine Learning.

.- Towards Estimating Water Consumption in Semi-Arid Urban Landscaping: A Machine Learning Approach.

.- Talent Identification in Football Using Supervised Machine Learning.

.- Latent State Space Quantization for Learning and Exploring Goals.

.- Predicting and Classifying Contaminants in Mexican Water Bodies.

.- A ConvLSTM approach for the WorldClim Dataset in Mexico.

.- Building Resilience Against Climate Change, Focusing on Predicting Precipitation with Machine Learning Models on Mexico's Metropolitan Area.

.- Machine Learning Approaches for Water Quality Monitoring in the Desert State of Sonora.

.- Predicting Water Levels Using Gradient Boosting Regressor and LSTM Models: A Case Study of Lago de Chapala Dam.

.- Efficiently Mining High Average Utility Co-location Patterns Using Maximal Cliques and Pruning Strategies.

.- QUE MAX-TE-LATTE Personalized Product Recommendations in the ' Coffee Shop Industry: Enhancing Customer Experience and Loyalty.

.- Price Estimation for Pre-Owned Vehicles Using Machine Learning.

.- Algotrading R2ED: A Machine Learning Approach.

.- Analysis of Predictive Factors in University Dropout Rates Using Data Science Techniques.

.- Machine Learning.

.- Incremental learning for object classification in a real and dynamic world.

.- Easy for us, complex for AI: Assessing the coherence of generated realistic images.

.- Comparative analysis of natural landmark detection in lunar terrain images.

.- Exploring Anchor-Free Object Detection Models for Surgical Tool Detection: A Comparative Study of Faster-RCNN, YOLOv4, and CenterNet++.

.- Smartphone-based Fuel Identification Model for Wildifire Risk Assessment using YOLOv8.