Health Analytics with R : Learning Data Science Using Examples from Healthcare and Direct-to-Consumer Genetics (2024)

個数:

Health Analytics with R : Learning Data Science Using Examples from Healthcare and Direct-to-Consumer Genetics (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 660 p.
  • 商品コード 9783031743825

Full Description

This textbook teaches health analytics using examples from the statistical programming language R. It utilizes real-world examples with publicly available datasets from healthcare and direct-to-consumer genetics to provide learners with real-world examples and enable them to get their hands on actual data. This textbook is designed to accompany either a senior-level undergraduate course or a Masters level graduate course on health analytics.

The reader will advance from no prior knowledge of R to being well versed in applications within R that apply to data science and health analytics.

"I have never seen a book like this and think it will make an important contribution to the field. I really like that it covers environmental, social, and geospatial data. I also really like the coverage of ethics. These aspects of health analytics are often overlooked or deemphasized. I will definitely buy copies for my team."

- Jason Moore, Cedars-Sinai Medical Center

"Overall, I have a highly positive impression of the book. It is VERY comprehensive. It covers very extensive data types. I do not recall other books with the same level of comprehensiveness."

- Shuangge Ma, Yale University

"The book is comprehensive in both aspects of genetics, and health analytics. It covers any type of information a healthcare data scientist should be familiar with, whether they are novice or experienced. I found any chapter that I looked into comprehensive, but also not too detailed (although in general this book is more than 600 pages of comprehensive and detailed relevant information)."

- Robert Moskovtich, Ben-Gurion University of the Negev

Contents

Chapter 1-Introduction.- Chapter 2-Genetics Analysis for Health Analytics.- Chapter 3-Determining Phenotypic Traits from Single Nucleotide Polymorphism (SNP) Data.- Chapter 4-Clinical Genetic Databases: ClinVar, ACMG Clinical Practice Guidelines.- Chapter 5-Inferring Disease Risk from Genetics.- Chapter 6-Challenges in Health Analytics Due to Lack of Diversity in Genetic Research: Implications and Issues with Published Knowledge.- Chapter 7-Clinical Data and Health Data Types.- Chapter 8-Clinical Datasets: Open Access Electronic Health Records Datasets.- Chapter 9-Association Mining with Clinical Data: Phenotype-Wide Association Studies (PheWAS).- Chapter 10-Organizing a Clinical Study Across Multiple Clinical Systems: Common Data Models.- Chapter 11-Environmental Health Data Types for Health Analytics.- Chapter 12-Geospatial Analysis Using Environmental Health Data.- Chapter 13-Social Determinants of Health Data for Health Analytics.- Chapter 14-Geospatial Analysis Using Social Determinants of Health, Clinical Data and Spatial Regression Methods.- Chapter 15-Ethics.

最近チェックした商品