Between Mechanics and Architecture : The Mathematical Search for Stability in Architecture (Mathematics and the Built Environment 8) (2025. xxiv, 568 S. XXIV, 568 p. 375 illus., 187 illus. in color. 235 m)

個数:
電子版価格
¥28,872
  • 電子版あり

Between Mechanics and Architecture : The Mathematical Search for Stability in Architecture (Mathematics and the Built Environment 8) (2025. xxiv, 568 S. XXIV, 568 p. 375 illus., 187 illus. in color. 235 m)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031735295

Full Description

This collection of essays reflects the author's decades-long dedication to studying the interplay between mechanics and architecture. It explores how advancements in mechanics have influenced architectural innovation and how the need for new architectural solutions has driven theoretical progress in engineering. By examining the historical roots of these fields, these essays provide a deep analysis of key developments.

This interdisciplinary work will appeal to scholars, students, and anyone interested in the complex relationship between the theoretical and practical aspects of architecture and civil engineering.

Contents

Preface. What Do We Mean by Between Mechanics and Architecture?.- Chapter 1. Relations between Mechanics and Architecture through the History of the Parallelogram Law of Forces from Antiquity to 1800.- Chapter 2. Mathematics, Architecture and Mechanics in the School of François d'Aguilon and Grégoire de Saint-Vincent.- Chapter 3. Is the Flat Vault a Lost Proposition in John Wallis's Work?.- Chapter 4. The Use of a Particular Form of the Parallelogram Law of Forces for the Building of Vaults (1650-1750).- Chapter 5. The De curvatura fornicis of Jacob Bernoulli: The Introduction of the Infinitely Small into the Calculation of Arches.- Chapter 6. The Catenary, or How Differential Calculus Appeared on the Public Square.- Chapter 7. The Bernoullis and the Elastica: From Leibniz's Nova methodus to Euler's Methodus inveniendi.- Chapter 8. The Theory of Vaults of Pierre Bouguer.- Chapter 9. The Entasis of Columns from Blondel to Lagrange: Mathematical Games in Search of the Greatest Stability.- Chapter 10. A Study of Coulomb's Application of the Rules of Maxima and Minima to Problems of Statics.- Chapter 11. Jacques-Germain Soufflot and the Relationship between Rules and Taste.- Chapter 12. The Catenary as Inspiration.- Chapter 13. The Study of the Stability of Vaults by the Viscount of Nieuport.- Chapter 14. On Mascheroni's "New Researches on the Equilibrium of Vaults".- Chapter 15. The Supports Problem: A Dead-End Street in the History of Stability of Structures.- Chapter 16. The Discovery of General Methods for Elastic Systems, 1852-1875.- Chapter 17. The Industrial Revolution and its Consequences. Part I: Iron Frameworks and Cullmann's "Graphostatics".