Machine Learning in Medical Imaging : 15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

個数:

Machine Learning in Medical Imaging : 15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 247 p.
  • 商品コード 9783031732928

Full Description

This book constitutes the proceedings of the 15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 6, 2024.

The 63 full papers presented in this volume were carefully reviewed and selected from 100 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging using artificial intelligence (AI) and machine learning (ML).

Contents

Robust Box Prompt based SAM for Medical Image Segmentation.- Multi-task Learning Approach for Intracranial Hemorrhage Prognosis.- Mitigating False Predictions In Unreasonable Body Regions.- UniFed: A Universal Federation of a Mixture of Highly Heterogeneous Medical Image Classification Tasks.- Tackling domain generalization for out-of-distribution endoscopic imaging.- Benchmarking Dependence Measures to Prevent Shortcut Learning in Medical Imaging.- Selective Classifier Based Search Space Shrinking for Radiographs Retrieval.- Pseudo-Rendering for Resolution and Topology-Invariant Cortical Parcellation.- Partially Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation.- VIS-MAE: An Efficient Self-Supervised Learning Approach on Medical Image Segmentation and Classification.- Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis.- Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images.- StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations.- Detection of Emerging Infectious Diseases in Lung CT based on Spatial Anomaly Patterns.- Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration.- Noise-robust onformal prediction for medical image classification.- Identifying Critical Tokens for Accurate Predictions in Transformer-based Medical Imaging Models.-Resource-efficient Medical Image Analysis with Self-adapting Forward-Forward Networks.- SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images.- Arges: Spatio-Temporal Transformer for Ulcerative Colitis Severity Assessment in Endoscopy Videos.- Characterizing the Histology Spatial Intersections between Tumor-infiltrating Lymphocytes and Tumors for Survival Prediction of Cancers Via Graph Contrastive Learning.-Identifying Nonalcoholic Fatty Liver Disease and Adanced Liver Fibrosis from MRI in UK Biobank.- Explainable and Controllable Motion Curve Guided Cardiac Ultrasound Video Generation.

最近チェックした商品