Ethics and Fairness in Medical Imaging : Second International Workshop on Fairness of AI in Medical Imaging, FAIMI 2024, and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, EPIMI 2024, Held in Conjunction with MIC (2024)

個数:

Ethics and Fairness in Medical Imaging : Second International Workshop on Fairness of AI in Medical Imaging, FAIMI 2024, and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, EPIMI 2024, Held in Conjunction with MIC (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 商品コード 9783031727863

Full Description

This book constitutes the refereed proceedings of the Second International Workshop, FAIMI 2024, and the Third International Workshop, EPIMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, in October 2024.

The 17 full papers presented in this book were carefully reviewed and selected from 21 submissions.

FAIMI aimed to raise awareness about potential fairness issues in machine learning within the context of biomedical image analysis.

The instance of EPIMI concentrates on topics surrounding open science, taking a critical lens on the subject.

Contents

FAIMI: Slicing Through Bias: Explaining Performance Gaps in Medical Image Analysis using Slice Discovery Methods.- Dataset Distribution Impacts Model Fairness: Single vs Multi-Task Learning.- AI Fairness in Medical Imaging: Controlling for Disease Severity.- Fair and Private CT Contrast Agent Detection.- Mitigating Overdiagnosis Bias in CNN-Based Alzheimer's Disease Diagnosis for the Elderly.- Fair AI Outcomes Without Sacrificing Group Gains .- All you need is a guiding hand: mitigating shortcut bias in deep learning models for medical imaging.- Exploring Fairness in State-of-the-Art Pulmonary Nodule Detection Algorithms.- Quantifying the Impact of Population Shift Across Age and Sex for Abdominal Organ Segmentation.- BMFT: Achieving Fairness via Bias-based Weight Masking Fine-tuning.- Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data.- Do sites benefit equally from distributed learning in medical image analysis.- Cycle-GANs generated difference maps to interpret race prediction from medical images.- On Biases in a UK Biobank-based Retinal Image Classification Model.- Investigating Gender Bias in Lymph-node Segmentation with Anatomical Priors.- EPIMI: Assessing the Impact of Sociotechnical Harms in AI-based Medical Image Analysis.- Practical and Ethical Considerations for Generative AI in Medical Imaging.

最近チェックした商品