Computer Vision - ECCV 2024 : 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part III (Lecture Notes in Computer Science) (2024)

個数:
  • ポイントキャンペーン

Computer Vision - ECCV 2024 : 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part III (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 471 p.
  • 商品コード 9783031726453

Full Description

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29-October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Contents

Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal.- Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation.- Efficient Few-Shot Action Recognition via Multi-Level Post-Reasoning.- Text2Place: Affordance-aware Text Guided Human Placement.- OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations.- Zero-Shot Multi-Object Scene Completion.- Beta-Tuned Timestep Diffusion Model.- POA: Pre-training Once for Models of All Sizes.- Taming Latent Diffusion Model for Neural Radiance Field Inpainting.- MapDistill: Boosting Efficient Camera-based HD Map Construction via Camera-LiDAR Fusion Model Distillation.- ByteEdit: Boost, Comply and Accelerate Generative Image Editing.- ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with Probabilistic Fusion.- High-Resolution and Few-shot View Synthesis from Asymmetric Dual-lens Inputs.- Accelerating Image Super-Resolution Networks with Pixel-Level Classification.- LASS3D: Language-Assisted Semi-Supervised 3D Semantic Segmentation with Progressive Unreliable Data Exploitation.- Contourlet Residual for Prompt Learning Enhanced Infrared Image Super-Resolution.- Click-Gaussian: Interactive Segmentation to Any 3D Gaussians.- Random Walk on Pixel Manifolds for Anomaly Segmentation of Complex Driving Scenes.- DySeT: a Dynamic Masked Self-distillation Approach for Robust Trajectory Prediction.- Track Everything Everywhere Fast and Robustly.- Towards Open-ended Visual Quality Comparison.- FreeInit: Bridging Initialization Gap in Video Diffusion Models.- DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs.- Eliminating Feature Ambiguity for Few-Shot Segmentation.- Soft Prompt Generation for Domain Generalization.- Shedding More Light on Robust Classifiers under the lens of Energy-based Models.

最近チェックした商品