Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part VII (Lecture Notes in Computer Science) (2024)

個数:

Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part VII (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9783031723490
  • DDC分類 006.32

Full Description

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17-20, 2024.

The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: 

Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning.

Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods.

Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision.

Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning.

Part V - graph neural networks; and large language models.

Part VI - multimodality; federated learning; and time series processing.

Part VII - speech processing; natural language processing; and language modeling.

Part VIII - biosignal processing in medicine and physiology; and medical image processing.

Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security.

Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Contents

.- Speech Processing.

.- Breaking the Corpus Bottleneck for Multi-dialect Speech Recognition with Flexible Adapters.

.- Developmental Predictive Coding Model for Early Infancy Mono- and Bilingual Vocal Continual Learning.

.- T-DVAE: A Transformer-based Dynamical Variational Autoencoder for Speech.

.- Natural Language Processing.

.- A Generalizable Context-Aware Deep Learning Model for Abusive Language Detection.

.- A Novel Graph Neural Network Based Model for Text Classification.

.- ABSA Methodology Based on Interval-enhanced Talking-heads Attention Network.

.- An Evaluation Dataset for Targeted Sentiment Analysis in Long-Form Chinese News Articles.

.- Anti-Hate Speech Framework: Leveraging Hedging Hyperbolic Learning.

.- Combining Data Generation and Active Learning for Low-Resource Question Answering.

.- CoT-BERT: Enhancing Unsupervised Sentence Representation through Chain-of-Thought.

.- EKD: Effective Knowledge Distillation for Few-Shot Sentiment Analysis.

.- End-to-End Training of Back-Translation Framework with Categorical Reparameterization Trick.

.- Enhancing Zero-Shot Translation in Multilingual Neural Machine Translation: Focusing on obtaining Location-Agnostic Representations.

.- Generative Sentiment Analysis via Latent Category Distribution and Constrained Decoding.

.- Improve Shallow Decoder Based Transformer with Structured Expert Prediction.

.- KELTP: Keyword-Enhanced Learned Token Pruning for Knowledge-Grounded Dialogue.

.- Knowledge Base Question Generation via Data Augmentation with Dynamic-prompt.

.- Lifelong Sentiment Classification Based on Adaptive Parameter Updating.

.- Multi-stage vs Single-stage: A Local Information Focused Approach for Overlapping Event

Extraction.

.- PLIClass: Weakly Supervised Text Classification with Iterative Training and Denoisy Inference.

.- Reinforced Keyphrase Genertion with Multi-Dimensional Reward.

.- Reinforced Multi-Teacher Knowledge Distillation for Unsupervised Sentence Representation.

.- Summarizing Like Human: Edit-Based Text Summarization with Keywords.

.- Towards Persona-oriented LLM-generated Text Detection: Benchmark Dataset and Method.

.- Use of Riemannian distance metric to verify topological  similarity of acoustic and text domains.

.- WKE: Word-level Knowledge Enrichment for Aspect Term Extraction.

.- Language Modeling.

.- A general-purpose material entity extraction method from large compound corpora using fine

tuning of character features.

.- Efficient Fine-tuning for Low-resource Tibetan Pre-trained Language Models.

.- Enhancing LM's Task Adaptability: Powerful Post-Training Framework with Reinforcement

Learning from Model Feedback.

.- GL-NER: Generation-aware Large Language Models for Few-shot Named Entity Recognition.

最近チェックした商品