Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part V (Lecture Notes in Computer Science) (2024)

個数:

Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part V (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 436 p.
  • 商品コード 9783031723438

Full Description

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17-20, 2024.

The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: 

Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning.

Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods.

Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision.

Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning.

Part V - graph neural networks; and large language models.

Part VI - multimodality; federated learning; and time series processing.

Part VII - speech processing; natural language processing; and language modeling.

Part VIII - biosignal processing in medicine and physiology; and medical image processing.

Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security.

Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Contents

.- Graph Neural Networks.

.- 3D Lattice Deformation Prediction with Hierarchical Graph Attention Networks.

.- Beyond Homophily: Attributed Graph Anomaly Detection via Heterophily-aware Contrastive Learning Network.

.- Boosting Attributed Graph Anomaly Detection via Negative Sample Awareness.

.- CauchyGCN: Preserving Local Smoothness in Graph Convolutional Networks via a Cauchy-Based Message-Passing Scheme and Clustering Analysis.

.- ComMGAE: Community Aware Masked Graph AutoEncoder.

.- CTQW-GraphSAGE: Trainabel Continuous-Time Quantum Walk On Graph.

.- Edged Weisfeiler-Lehman algorithm.

.- Enhancing Fraud Detection via GNNs with Synthetic Fraud Node Generation and Integrated Structural Features.

.- Graph-Guided Multi-View Text Classification: Advanced Solutions for Fast Inference.

.- Invariant Graph Contrastive Learning for Mitigating Neighborhood Bias in Graph Neural Network based Recommender Systems.

.- Key Substructure-Driven Backdoor Attacks on Graph Neural Networks.

.- Missing Data Imputation via Neighbor Data Feature-enriched Neural Ordinary Differential Equations.

.- Multi-graph Fusion and Virtual Node Enhanced Graph Neural Networks.

.- STGNA: Spatial-Temporal Graph Convolutional Networks with Node Level Attention for Shortwave Communications Parameters Forecasting.

.- Virtual Nodes based Heterogeneous Graph Convolutional Neural Network for Efficient Long-Range Information Aggregation.

.- Large Language Models.

.- A Three-Phases-LORA Finetuned Hybrid LLM Integrated with Strong Prior Module in the Eduation Context. 

.- An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration.

.- Assessing the Emergent Symbolic Reasoning Abilities of Llama Large Language Models.

.- BiosERC: Integrating Biography Speakers Supported by LLMs for ERC Tasks.

.- CSAFT: Continuous Semantic Augmentation Fine-Tuning for Legal Large Language Models.

.- FashionGPT: A Large Vision-Language Model for Enhancing Fashion Understanding.

.- Generative Chain-of-Thought for Zero-shot Cognitive Reasoning.

.- Generic Joke Generation with Moral Constraints.

.- Large Language Model Ranker with Graph Reasoning for Zero-Shot Recommendation. 

.- REM: A Ranking-based Automatic Evaluation Method for LLMs.

.- Semantics-Preserved Distortion for Personal Privacy Protection in Information Management.

.- Towards Minimal Edits in Automated Program Repair: A Hybrid Framework Integrating Graph Neural Networks and Large Language Models.

.- Unveiling Vulnerabilities in Large Vision-Language Models: The SAVJ Jailbreak Approach.

最近チェックした商品