Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

個数:

Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 464 p.
  • 商品コード 9783031723346

Full Description

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17-20, 2024.

The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: 

Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning.

Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods.

Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision.

Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning.

Part V - graph neural networks; and large language models.

Part VI - multimodality; federated learning; and time series processing.

Part VII - speech processing; natural language processing; and language modeling.

Part VIII - biosignal processing in medicine and physiology; and medical image processing.

Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security.

Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Contents

.- Computer Vision: Classification.

.- A WEAKLY SUPERVISED PART DETECTION METHOD FOR ROBUST FINE-GRAINED CLASSIFICATION.

.- An Energy Sampling Replay-Based Continual Learning Framework.

.- Coarse-to-Fine Granularity in MultiScale FeatureFusion Network for SAR Ship Classification.

.-Multi-scale convolutional attention fuzzy broad network for few-shot hyperspectral image classification.

.- Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification.

.- Computer Vision: Object Detection.

.- CIA-Net:Cross-modal Interaction and Depth Quality-Aware Network for RGB-D Salient Object Detection.

.- CPH DETR: Comprehensive Regression Loss for End-to-End Object Detection.

.- DecoratingFusion: A LiDAR-Camera Fusion Network with the Combination of Point-level and Feature-level Fusion.

.- EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection.

.- Global-Guided Weighted Enhancement for Salient Object Detection.

.- KDNet: Leveraging Vision-Language Knowledge Distillation for Few-Shot Object Detection.

.- MUFASA: Multi-View Fusion and Adaptation Network with Spatial Awareness for Radar Object Detection.

.- One-Shot Object Detection with 4D-Correlation and 4D-Attention.

.- Small Object Detection Based on Bidirectional Feature Fusion and Multi-scale Distillation.

.-SRA-YOLO: Spatial Resolution Adaptive YOLO for Semi-Supervised Cross-Domain Aerial Object Detection.

.- Computer Vision: Security and Adversarial Attacks.

.- BiFAT: Bilateral Filtering and Attention Mechanisms in a Two-Stream Model for Deepfake Detection.

.- EL-FDL: Improving Image Forgery Detection and Localization via Ensemble Learning.

.- Generalizable Deepfake Detection with Unbiased Feature Extraction and Low-level Forgery Enhancement.

.- Generative Universal Nullifying Perturbation for Countering Deepfakes through Combined Unsupervised Feature Aggregation.

.- Noise-NeRF: Hide Information in Neural Radiance Field using Trainable Noise.

.- Unconventional Face Adversarial Attack.

Computer Vision: Image EnhancementComputer Vision: Image Enhancement.

.- Computer Vision: Image Enhancement.

.- A Study in Dataset Pruning for Image Super-Resolution.

.- EDAFormer:Enhancing Low-Light Images with a Dual-Attention Transformer.

.- Image Matting Based on Deep Equilibrium Models.

.- Computer Vision: 3D Methods.

.- ControlNeRF: Text-Driven 3D Scene Stylization via Diffusion Model.

.- Interactive Color Manipulation in NeRF: A Point Cloud and Palette-driven Approach.

.- Multimodal Monocular Dense Depth Estimation with Event-Frame Fusion using Transformer.

.- SAM-NeRF: NeRF-based 3D Instance Segmentation with Segment Anything Model.

.- Towards High-Accuracy Point Cloud Registration with Channel Self-Attention and Angle Invariance.

最近チェックした商品