Practical Statistical Learning and Data Science Methods : Case Studies from LISA 2020 Global Network, USA (Steam-h: Science, Technology, Engineering, Agriculture, Mathematics & Health) (2024)

個数:

Practical Statistical Learning and Data Science Methods : Case Studies from LISA 2020 Global Network, USA (Steam-h: Science, Technology, Engineering, Agriculture, Mathematics & Health) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 752 p.
  • 商品コード 9783031722141

Full Description

This contributed volume offers practical implementation strategies for statistical learning and data science techniques, with fully peer-reviewed papers that embody insights and experiences gathered within the LISA 2020 Global Network. Through a series of compelling case studies, readers are immersed in practical methodologies, real-world applications, and innovative approaches in statistical learning and data science.

Topics covered in this volume span a wide array of applications, including machine learning in health data analysis, deep learning models for precipitation modeling, interpretation techniques for machine learning models in BMI classification for obesity studies, as well as a comparative analysis of sampling methods in machine learning health applications. By addressing the evolving landscape of data analytics in many ways, this volume serves as a valuable resource for practitioners, researchers, and students alike.

The LISA 2020 Global Network is dedicated to enhancing statistical and data science capabilities in developing countries through the establishment of collaboration laboratories, also known as "stat labs." These stat labs function as engines for development, nurturing the next generation of collaborative statisticians and data scientists while providing essential research infrastructure for researchers, data producers, and decision-makers.

Contents

.- Effects of Imputation Techniques on Predictive Performance of Supervised Machine Learning Algorithms: Empirical Insights from Health Data Classification.

.- Predicting Air Quality in an Urban African City Using Four Comparative Novel Time Series Models.

.- Obesity Classification Using Weighted Hard and Soft Voting Ensemble Machine Learning Classifiers.

.- Predictive Modeling for Disease Diagnosis Using Calibrated Algorithms: A Comparative Study.

.- Predicting Precipitation Dynamics in Africa Using Deep Learning Models.

.- Enhancing Predictive Performance through Optimized Ensemble Stacking for Imbalanced Classification Problems.

.- A Comparative Exploration of SHAP and LIME for Enhancing the Interpretability of Machine Learning Models in BMI Classification.

.- Decision Tree Planning Strategies for Predicting Obesity.

.- Clustering Multiple Time Series with SSA.

.- Spine-Based Calibration for Classification Algorithms: An Experimental Comparison of Various Imbalanced Ratios.

.- Exploring the Applicability of Advanced Exponential Smoothing and NN Models for Climate Time Series Forecasting: Insights and Changepoint Prediction in the Brazilian Context.

.- A Comprehensive Forecasting Experiment on Temperature Trends Across Thirty-Two American Countries.

.- A Comparative Analysis of Sampling Methods for Imbalanced Data Classification in Machine Learning Health Applications.

.- Comparative Analysis of MCC, F1-Score, and Balanced Accuracy Metrics for Imbalanced Health Data Classification.

.- Basics of R- Shiny for developing Interactive Visualizations.

最近チェックした商品