Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support (Studies in Computational Intelligence) (2024)

個数:

Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support (Studies in Computational Intelligence) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 278 p.
  • 商品コード 9783031718205

Full Description

This book explores integrating machine learning techniques and sensor applications for human emotion and activity recognition, creating personalized and effective support systems. It covers state-of-the-art machine learning techniques and large language models using multimodal sensors. Enhancing the quality of life for individuals with special needs, particularly the elderly, is a key focus in Active and Assisted Living (AAL) research. Unlike other literature, it emphasizes support mechanisms along with recognition, using metamodel integration for adaptable AAL systems. This book offers insights into technologies transforming AAL for researchers, students, and practitioners. It is a valuable resource for developing responsive and personalized support systems that enhance life quality in smart environments. It is also essential for advancing the understanding of machine learning and sensor technologies in AAL and emotion recognition. 

Contents

Decoding Human Essence Novel Machine Learning Techniques and Sensor Applications in Emotion Perception and Activity Detection.- Leveraging Context-Aware Emotion and Fatigue Recognition through Large Language Models for Enhanced Advanced Driver Assistance Systems ADAS.- ECG based Human Emotion Recognition Using Generative Models.- An evolutionary convolutional neural network architecture for recognizing emotions from EEG signals.- Analyzing the Potential Contribution of a Meta Learning Approach to Robust and Effective Subject Independent Emotion related Time Series Analysis of Bio signals.- A Multibranch LSTM CNN Model for Human Activity Recognition.- Importance of Activity and Emotion Detection in the field of Ambient Assisted Living.- Real Time Human Activity Recognition for the Elderly VR Training with Body Area Networks.- An Interactive Metamodel Integration Approach IMIA for Active and Assisted Living Systems.

最近チェックした商品