Business Process Management : 22nd International Conference, BPM 2024, Krakow, Poland, September 1-6, 2024, Proceedings (Lecture Notes in Computer Science) (2024)

個数:

Business Process Management : 22nd International Conference, BPM 2024, Krakow, Poland, September 1-6, 2024, Proceedings (Lecture Notes in Computer Science) (2024)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 550 p.
  • 言語 ENG
  • 商品コード 9783031703959

Full Description

This book constitutes the refereed proceedings of the 22nd International Conference on Business Process Management, BPM 2024, which took place in Krakow, Poland, in September 2024. 

The 29 full papers included in this book were carefully reviewed and selected from 144 submissions. They were organized in topical sections as follows: Foundations; Engineering; and Management. 



 

Contents

Foundations.- Optimizing Resource-Driven Process Configuration through Genetic Algorithms.- Data Petri Nets meet Probabilistic Programming.- Conformance Checking of Fuzzy Logs against Declarative Temporal Specifications.- Object Synchronizations and Specializations with Silent Objects in Object-Centric Petri Nets.- Glocal Conformance Checking.- On the interplay between BPMN collaborations and the physical environment.- Super Variants.- Repairing Process Models through Simulation and Explainable AI.- Improving Process Discovery Using Translucent Activity Relationships.- Engineering.- Optimizing Resource Allocation Policies in Real-World Business Processes using Hybrid Process Simulation and Deep Reinforcement Learning.- Exploiting general purpose big-data frameworks in process mining: the case of declarative process discovery.- Attention Please: What Transformer Models Really Learn for Process Prediction.- GEDI: Generating Event Data with Intentional Features for Benchmarking Process Mining.- Efficient Training of Recurrent Neural Networks for Remaining Time Prediction in Predictive Process Monitoring.- What's Behind the Screen? Unveiling UI Hierarchies in Process-Related UI Logs.- Looking for Change: A Computer Vision Approach for Concept Drift Detection in Process Mining.- Mining Behavioral Patterns for Conformance Diagnostics.- xSemAD: Explainable Semantic Anomaly Detection in Event Logs Using Sequence-to-Sequence Models.- CoSMo: a Framework to Instantiate Conditioned Process Simulation Models.- Experience Based Resource Allocation for Remaining Time Optimization.- Uncovering patterns for local explanations in outcome-based Predictive Process Monitoring.- Beyond Log and Model Moves in Conformance Checking: Discovering Process-Level Deviation Patterns.- Management.- Explanatory Capabilities of Large Language Models in Prescriptive Process Monitoring.- Categories of Business Value of Robotic Process Automation: A Study of Benefits and Challenges.- Anticipating Data Inaccuracy Consequences in Business Processes: An Empirical Study.- SCP-BP Framework: Situational Crime Prevention for Managing Data Breaches in Business Processes.- LLM-Assisted Optimization of Waiting Time in Business Processes: A Prompting Method.- Exploring the Cognitive Effects of Ambiguity in Process Models.- Techno-empowerment of Process Automation: Understanding Employee Acceptance of Autonomous AI in Business Processes.

最近チェックした商品